Edexcel GCE

Further Pure Mathematics FP1

Advanced/Advanced Subsidiary

Monday 10 June 2013 - Morning
Time: 1 hour 30 minutes
1.

$$
\mathbf{M}=\left(\begin{array}{cc}
a & 1 \\
1 & 2-a
\end{array}\right), \text { where } a \text { is a constant. }
$$

(a) Find $\operatorname{det} \mathrm{M}$ in terms of a.

A triangle T is transformed to T^{\prime} by the matrix M .
Given that the area of T^{\prime} is 0 ,
(b) find the value of a.
2.

$$
\mathrm{f}(z)=z^{3}+5 z^{2}+11 z+15
$$

Given that $z=2 \mathrm{i}-1$ is a solution of the equation $\mathrm{f}(z)=0$, use algebra to solve $\mathrm{f}(z)=0$ completely.
3.

$$
z_{1}=\frac{1}{2}(1+\mathrm{i} \sqrt{ } 3), z_{2}=-\sqrt{3}+\mathrm{i}
$$

(a) Express z_{1} and z_{2} in the form $r(\cos \theta+\mathrm{i} \sin \theta)$ giving exact values of r and θ.
(b) Find $\left|z_{1} z_{2}\right|$.
(2)
(c) Show and label z_{1} and z_{2} on a single Argand diagram.
(2)
4. The hyperbola H has equation

$$
x y=3
$$

The point $Q(1,3)$ is on H.
(a) Find the equation of the normal to H at Q in the form $y=a x+b$, where a and b are constants.

The normal at Q intersects H again at the point R.
(b) Find the coordinates of R.
5. Prove, by induction, that $3^{2 n}+7$ is divisible by 8 for all positive integers n.
6. A curve C is in the form of a parabola with equation $y^{2}=4 x$.
$P\left(p^{2}, 2 p\right)$ and $Q\left(q^{2}, 2 q\right)$ are points on C where $p>q$.
(a) Find an equation of the tangent to C at P.
(b) The tangent at P and the tangent at Q are perpendicular and intersect at the point $R(-1,2)$.
(i) Find the exact value of p and the exact value of q.
(ii) Find the area of the triangle $P Q R$.
(4)
7. (a) Use the standard results for $\sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$ to show that

$$
\sum_{r=1}^{n} r^{2}(r-1)=\frac{n(n+1)(3 n+2)(n-1)}{12}
$$

for all positive integers n.
(5)
(b) Hence find the sum of the series

$$
\begin{equation*}
10^{2} \times 9+11^{2} \times 10+12^{2} \times 11+\ldots+50^{2} \times 49 \tag{3}
\end{equation*}
$$

8.

$$
f(x)=x^{3}-2 x-3
$$

(a) Show that $\mathrm{f}(x)=0$ has a root, α, in the interval $[1,2]$.
(b) Starting with the interval [1, 2], use interval bisection twice to find an interval of width 0.25 which contains α.
(c) Using $x_{0}=1.8$ as a first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
9. With reference to a fixed origin O and coordinate axes $O x$ and $O y$, a transformation from
$\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by the matrix A where

$$
A=\left(\begin{array}{cc}
3 & 1 \\
1 & -2
\end{array}\right)
$$

(a) Find A^{2}.
(b) Show that the matrix A is non-singular.
(c) Find A^{-1}.
(2)

The transformation represented by matrix A maps the point P onto the point Q.
Given that Q has coordinates $(k-1,2-k)$, where k is a constant,
(d) show that P lies on the line with equation $y=4 x-1$
(2)
(2)
-
(3)

