

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/43

Paper 4 A Level Structured Questions

May/June 2016

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9702	43

1 (a) (gravitational) potential at infinity defined as/is zero B1

(gravitational) force attractive so work got out/done as object moves from infinity (so potential is negative)

B1 [2]

(b) (i)
$$\Delta E = m\Delta \phi$$

= $180 \times (14 - 10) \times 10^8$ C1
= 7.2×10^{10} J

A1

increase

B1 [3]

(ii) energy required = $180 \times (10 - 4.4) \times 10^8$ energy per unit mass = $(10 - 4.4) \times 10^8$

C1

$$\frac{1}{2} \times 180 \times v^2 = 180 \times (10 - 4.4) \times 10^8$$

$$\frac{1}{2} \times v^2 = (10 - 4.4) \times 10^8$$

C1

$$v = 3.3 \times 10^4 \,\mathrm{m \, s^{-1}}$$

[3] Α1

2 (a) e.g. time of collisions negligible compared to time between collisions

no intermolecular forces (except during collisions)

random motion (of molecules)

large numbers of molecules

(total) volume of molecules negligible compared to volume of containing vessel

average/mean separation large compared with size of molecules

B2 [2] any two

(b) (i) mass = $4.0 / (6.02 \times 10^{23}) = 6.6 \times 10^{-24} \text{ g}$ 2 mass = $4.0 \times 1.66 \times 10^{-27} \times 10^3 = 6.6 \times 10^{-24} \,\mathrm{g}$ **B1** [1]

(ii)
$$\frac{3}{2}kT = \frac{1}{2}m < c^2 >$$
 C1

$$\frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = \frac{1}{2} \times 6.6 \times 10^{-27} \times < c^{2} >$$

$$\langle c^2 \rangle = 1.88 \times 10^6 \, (\text{m}^2 \, \text{s}^{-2})$$

r.m.s. speed =
$$1.4 \times 10^3 \,\mathrm{m \, s}^{-1}$$

Page 3			Paper	
		Cambridge International AS/A Level – May/June 2016 9702	43	
3	(a)	acceleration/force proportional to displacement (from fixed point)	M1	
		acceleration/force and displacement in opposite directions	A1	[2]
	(b)	maximum displacements/accelerations are different	B1	
		graph is curved/not a straight line	B1	[2]
	(c)	(i) $\omega = 2\pi / T$ and $T = 0.8$ s	C1	
		$\omega = 7.9 \mathrm{rad}\mathrm{s}^{-1}$	A1	[2]
		(ii) $a = (-)\omega^2 x$ = $7.85^2 \times 1.5 \times 10^{-2}$	C1	
		$= 0.93 \text{ m s}^{-2} \text{ or } 0.94 \text{ m s}^{-2}$	A1	[2]
	(iii) $\Delta E = \frac{1}{2} m\omega^2 (x_0^2 - x^2)$	C1	
		= $1/2 \times 120 \times 10^{-3} \times 7.85^2 \times \{(1.5 \times 10^{-2})^2 - (0.9 \times 10^{-2})^2\}$	C1	
		$= 5.3 \times 10^{-4} \mathrm{J}$	A1	[3]
4	(a)	(i) product of speed and density	M1	
		reference to speed in medium (and density of medium)	A1	[2]
		(ii) α: ratio of reflected intensity and/to incident intensity	B1	
		Z_1 and Z_2 : (specific) acoustic impedances of media (on each side of boundary)	B1	[2]
	(b)	in muscle: $I_{\rm M} = I_0 e^{-\mu x}$ = $I_0 \exp(-23 \times 3.4 \times 10^{-2})$	C1	
		$I_{\rm M}/I_{\rm 0}=0.457$	C1	
		at boundary: $\alpha = (6.3 - 1.7)^2 / (6.3 + 1.7)^2$ = 0.33	C1	
		$I_{\rm T}/I_{\rm M} = [(1-\alpha)=] \ 0.67$	C1	
		$I_{\rm T}/I_0 = 0.457 \times 0.67$ = 0.31	A1	[5]

	天夕	百间原	日本水				www.qyt	Jonsui I . Co	וות			12	+元百问	
Р	age 4	ge 4 Mark Scheme				Sy	Syllabus		er					
			Can	nbridge International AS/A Level – May/June 2016				9	9702					
5	(a)	(i) (ii)	<u>1</u> 011										A1	[1]
		(,	0	0.25	0.50	0.75	1.00	1.25	1.50					
			1011	0110	1000	1110	0101	0011	0001					
			All 6 cc	orrect, 2	marks.	5 corre	ect, 1 m	ark.					A2	[2]
	(b)	ske	tch: 6 ho	orizonta	l steps	of width	n 0.25 m	ns show	'n				M1	
		step	os at cor	rect he	ights ar	nd all st	eps sho	own					A1	
		step	s show	n in cor	rect tim	e interv	als						A1	[3]
	(c)	incr	ease sa	mpling	frequer	ncy/rate							M1	
		so t	hat step	width/o	depth is	reduce	ed						A1	
		incr	ease nu	ımber o	f bits (ir	n each i	number)					M1	
		so t	hat step	height	is redu	ced							A1	[4]
6	(a)	ske	tch: fron	n <i>x</i> = 0 t	to <i>x</i> = <i>F</i>	?, poten	tial is c	onstant	at $V_{ m S}$				B1	

- (b) sketch: from x = 0 to x = R, field strength is zero B1 smooth curve through (R, E) and (2R, 0.25E) B1 smooth curve continues to (3R, 0.11E) B1 [3]
- 7 (a) line has non-zero intercept/line does not pass through origin

 charge is/should be proportional to potential (difference)

 or

 charge is/should be zero when p.d. is zero
 (therefore there is a systematic error)

 B1 [2]

Page 5		Mark Scheme Syllabus						
		Cambridge International AS/A Level – May/June 2016	9702	43				
(b	၁)	reasonable attempt at line of best fit		B1				
		use of gradient of line of best fit clear		M1				
		C = 2800 μF (allow ± 200 μF)		A1	[3]			
(c	>)	energy = $\frac{1}{2}$ CV^2 or energy = $\frac{1}{2}$ QV and $C = Q/V$		C1				
		$\Delta \text{ energy } = \frac{1}{2} \times 2800 \times 10^{-6} \times (9.0^2 - 6.0^2)$		C1				
		$= 6.3 \times 10^{-2} \text{ J}$		A1	[3]			
8 (a	a)	op-amp has infinite/(very) large gain		B1				
		op-amp saturates if $V^+ \neq V^-$		M1				
		V^{\dagger} is at earth potential so P (or V^{\dagger}) must be at earth		A1	[3]			
(b	•	input resistance to op-amp is very large or						
		current in R_2 = current in R_1		B1				
		$V_{\text{IN}}(-0) = IR_2 \text{ and } (0) - V_{\text{OUT}} = IR_1$		M1				
		$V_{\text{OUT}} / V_{\text{IN}} = -R_1 / R_2$		A1	[3]			
(c	:)	relay coil connected between V_{OUT} and earth		M1				
		correct diode symbol connected between V_{OUT} and coil or between coil	and earth	M1				
		correct polarity for diode ('clockwise')		A1	[3]			
9 (a	a)	0.10 mm		B1	[1]			
(b	o)	$V_{\rm H} = (0.13 \times 3.8) / (6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$		C1				
		$= 5.1 \times 10^{-7} \text{ V}$		A1	[2]			
10 (a	a)	(non-uniform) magnetic flux <u>in core</u> is changing		M1				
		induces (different) e.m.f. in (different parts of) the core		A1				
		(eddy) currents form in the core		M1				
		which give rise to heating		A1	[4]			

Pá	age 6		Syllabus	Pape	
		Cambridge International AS/A Level – May/June 2016	9702	43	
	(b)	as magnet falls, tube cuts magnetic flux		M1	
		e.m.f./(eddy) currents induced in metal/aluminium (tube)		A1	
		(eddy) current heating of tube		M1	
		with energy taken from falling magnet		A1	
		or			
		(eddy) currents produce magnetic field		(M1)	
		that opposes motion of magnet		(A1)	
		so magnet B has acceleration < g			
		or magnet B has smaller acceleration/reaches terminal speed		A1	[5]
11	(a)	period = 15 ms		C1	
		frequency (= 1 / T) = 67 Hz		A1	[2]
	(b)	zero		A1	[1]
	(c)	$I_{\text{r.m.s.}} = I_0 / \sqrt{2}$		C1	
		= 0.53 A		A1	[2]
	(d)	energy = $I_{\text{r.m.s.}}^2 \times R \times t$ or $\frac{1}{2} I_0^2 \times R \times t$			
		power = $I_{\text{r.m.s.}}^2 \times R$ and energy = power $\times t$		C1	
		energy = $0.53^2 \times 450 \times 30 \times 10^{-3}$			
		= 3.8 J		A1	[2]
12	(a)	(in a solid electrons in) neighbouring atoms are close together (and influence/interact with each other)		M1	
		this changes their electron energy levels		M1	
		(many atoms in lattice) cause a spread of energy levels into a band		A1	[3]

Page 7			Syllabus	Pape	er :
		Cambridge International AS/A Level – May/June 2016	9702	43	
	(b)	photons of light give energy to electrons in valence band		B1	
		electrons move into the conduction band		M1	
		leaving holes in the valence band		A1	
		these electrons and holes are charge carriers		B1	
		increased number/increased current, hence reduced resistance		B1	[5]
13	(a)	e.g. background count (rate)/radiation			
		multiple possible counts from each decay			
		radiation emitted in all directions			
		dead-time of counter			
		(daughter) product unstable/also emits radiation			
		self-absorption of radiation in sample or absorption in air/detector w	indow		
		three sensible suggestions, 1 each		В3	[3]
	(b)	$A = A_0 \exp(-\ln 2 \times t / T_{1/2})$			
		$1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\ln 2 \times 42.0 / T_{\frac{1}{2}})$			
		$1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\lambda \times 42.0)$		C1	
		$T_{\frac{1}{2}}$ = 5.1 minutes (306 s)		A1	[2]

[1]

В1

(c) discrete energy levels (in nuclei)