

GCE

Chemistry A

Advanced GCE

Unit F324: Rings, Polymers and Analysis

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

ALLOW Kekulé structures throughout

	Answer	Mark	Guidance
Question 1 (a)	Answer AlCl ₃ + Cl ₂ \longrightarrow AlCl ₄ ⁻ + Cl ⁺ \checkmark Curly arrow from π -bond to Cl ⁺ \checkmark Curly arrow from C-H bond back to reform π -ring $H^+ + AlCl_4^- \longrightarrow AlCl_3 + HCl \checkmark$ Note: 1st curly arrow should start within the ring or on the ring Note: ALLOW mechanism using Kekulé structures:	Mark 6	Guidance ANNOTATIONS MUST BE USED DO NOT ALLOW the following intermediate: π-ring must be more than 1/2 way up AND horseshoe' the right way up, ie gap towards C with Cl ALLOW + sign anywhere inside the 'hexagon' of intermediate ALLOW 1st curly arrow starting within the hexagon ALLOW mechanism with Cl–ClAlCl ₃ for 1st 2 marks, ie Cl — Cl AlCl ₃ Second curly arrow to either –Cl or AlCl ₃ Note: If Br ⁺ is used, DO NOT ALLOW 1st mechanism mark but all other marks available by ECF

Qı	Question		Answer	Mark	Guidance	
1	(b)	(i)	CI		Each mark is independent of the other	
					ALLOW C ₆ H ₅ CI for chlorobenzene	
			+ CI ₃ CCHO		ALLOW any unambiguous structure for Cl₃CCHO,	
					e.g. CCl ₃ CHO BUT DO NOT ALLOW CCl ₃ COH	
			+ H ₂ O			
			1st mark : reactants, correctly balanced, ✓ ie 2 C ₆ H ₅ Cl + Cl ₃ CCHO		Standalone mark	
			2nd mark: product, (correctly balanced) ✓	2		
			ie H ₂ O		Standalone mark	
		(ii)	6 ✓	1		
	(c)		substitution/nitration/NO ₂ at different positions (on the ring)		ALLOW examples, e.g. 1-chloro-2-nitrobenzene and	
			OR		1-chloro-2-nitrobenzene	
			forms different isomers		ALLOW 'it' for nitro group	
			OR multiple substitution/nitration ✓	1	ALLOW examples, e.g. 1-chloro-2,3-dinitrobenzene	
			multiple substitution/mitation •	•	IGNORE nitrate/NO ₃	
	(d)				ANNOTATIONS MUST BE USED	
	` '		In phenol,			
			(lone) pair of electrons on O is (partially) delocalised into		ALLOW diagram to show movement of lone pair into	
			the ring ✓		ring but delocalised ring must be mentioned	
			QWC: delocalised/delocalized/delocalise, etc must be spelt		ALLOW lone pair of electrons on O is (partially) drawn/	
			correctly in the correct context for benzene OR phenol at		attracted/pulled into delocalised ring	
			least once		IGNORE 'activates the ring'	
			electron density increases/is high ✓ ORA		DO NOT ALLOW charge density or electronegativity	
			Cl₂/electrophile is (more) polarised ✓ ORA	3	ALLOW Cl ₂ is (more) attracted	
					OR Cl ₂ is not polarised by benzene	
			₹-1-1	40	OR induces dipoles (in chlorine/electrophile)	
			Total	13		

Q	uesti	on	Answer	Mark	Guidance
2	(a)	(i)	donates a lone pair (on N) OR accepts a proton/H⁺ ✓	1	IGNORE 'forms a dative covalent bond' (no direction of lone pair) ALLOW 'forms a dative covalent bond with/to H⁺' ALLOW mark for N:→H⁺ (can be from correct equation)
		(ii)	(C ₂ H ₅ NH ₃ ⁺) ₂ SO ₄ ²⁻ ✓ C ₂ H ₅ NH ₃ ⁺ CH ₃ COO ⁻ ✓	2	ALLOW (C ₂ H ₅ NH ₃) ₂ SO ₄ DO NOT ALLOW (C ₂ H ₅ NH ₃) HSO ₄ OR (C ₂ H ₅ NH ₃ ⁺) HSO ₄ ⁻ brackets not required ALLOW (C ₂ H ₅ NH ₃) (CH ₃ COO) OR (C ₂ H ₅ NH ₃ ⁺) (CH ₃ COO ⁻) brackets not required ALLOW separate ions with or without a '+' sign between them, e.g. C ₂ H ₅ NH ₃ ⁺ + CH ₃ COO ⁻
	(b)	(i)	diazonium ion compos	COOH und B	In diazonium ion, IGNORE Cl ⁻ ALLOW '+' sign up to halfway along triple bond from left-hand N In compound B, ALLOW –OH ionised as –O ⁻ ALLOW –COOH ionised as COO ⁻
		(ii)	conditions = alkaline /OH⁻ AND use = dye/pigment/colouring ✓	1	BOTH responses required for one mark ALLOW named alkali, e.g. NaOH/KOH ALLOW base IGNORE references to temperature ALLOW use = indicator

Quest	tion	Answer	Mark	Guidance
2 (b)	(iii)	Organic product: N OH COO Na ⁺ ✓		IGNORE phenoxide: O OR O Na ALLOW COO OR COONA
		Other products: CO₂ AND H₂O ✓	2	ALLOW H ₂ CO ₃ Note: must be formulae and not names (in question)
(c)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ALLOW N_2^+ on structural formula $ ALLOW \ C_6H_5N_2^+ + \ H_2O \rightarrow \ C_6H_5OH + N_2 \ + \ H^+ $ $ ALLOW \ C_6H_5N_2CI + \ H_2O \rightarrow \ C_6H_5OH + N_2 \ + \ HCI $ $ If + charge \ shown, \ \textbf{IGNORE} \ its \ position $
		Total	9	

Q	uesti	on	Answer	Mark	Guidance
3	(a)		monomers join/bond/add/react/form polymer/form chain AND another product/small molecule e.g. H₂O/HCI ✓ QWC must spell AND use 'monomer(s)' correctly throughout	1	IGNORE 'two' when referring to monomers, ie (two) monomers
	(b)	(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW benzene ring for C ₆ H ₅ 'End bonds' MUST be shown (do not have to be dotted) ALLOW one or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) For ester, DO NOT ALLOW — O — C — O — C — O — C — O — C — O — C — O — C — O — C — O — C — O — C — O — C — C
		(ii)	H CH ₃ H CH ₃ C — C — C — C — C — H COOC ₂ H ₅ H COOC ₂ H ₅ ✓	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW one or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n

Q	uesti	on	Answer	Mark	Guidance
3	(c)		compound C H CH ₃ C H COOH COOH		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₂ C(CH ₃)COOH
			compound D and compound E $\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	ALLOW D and E by ECF from an incorrect structure of C provided that C contains a double bond and molecular formulae of D and E is $C_4H_8O_3$ with H_2O added across double bond
	(d)	(i)	НО	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) e.g. (CH ₃) ₂ CHOH DO NOT ALLOW –HO IGNORE working (<i>ie</i> other structures) provided correct structure of propan-2-ol is shown IGNORE name (even if wrong)

Qu	uesti	on	Answer	Mark	Guidance
3	(d)	(ii)	OR acid anhydride:	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) OR (2-)methylpropanoic acid DO NOT ALLOW incorrect name (will CON a correct structure) ALLOW acyl chloride: (CH ₃) ₂ CHCOCl IGNORE working provided correct structure of propan-2-ol is shown
		(iii)	Hydrogen bonds form with water Note: Can be shown in diagram as dashed line, ie (no label required) DO NOT CON 'hydrogen bond' from an incorrect hydrogen bond in diagram Mandelic acid forms more hydrogen bonds (with water) ORA Mandelic acid has an extra OH OR 2 OH groups OR has a COOH group ORA	3	ALLOW a diagram showing hydrogen bonds with water, dipole and lone pair are not required ALLOW a hydrogen bond to C=O, ie C=OH-O IGNORE bond angles Diagram does not need to show all of mandelic acid (IGNORE if wrong) ALLOW any comparison of numbers of hydrogen bonds provided that mandelic acid has more hydrogen bonds DO NOT ALLOW 'No -OH groups in ester (as there are)' DO NOT ALLOW reference to -OH-/ hydroxide IGNORE reference to carbon chain and van der Waals' forces Note: If a response compares Ester 1 with Ester 2 rather than with mandelic acid, maximum of 2 marks: 1st mark hydrogen bonds 2nd mark Ester 2 has more Os/oxygens OR Ester 2 forms more hydrogen bonds

C	uesti	on	Answer	Mark	Guidance
3	(d)	(iv)	To test for (adverse) side effects OR to test toxicity OR to test for irritation ✓	1	ALLOW a stated adverse side effect, eg allergy, carcinogenic, etc IGNORE references to optical isomers, chirality, etc IGNORE vague statements such as harmful to skin, dangerous to skin, corrosive to skin, reacts with skin ALLOW company liable to litigation/damages
			Total	13	

CH ₃ C Reduction Meth Oxidation Meth	COCHO + 4[H] → CH ₃ CHOHCH ₂ OH ✓ COCHO + [O] → CH ₃ COCOOH ✓ I reagents and observation Excluding the servation of the se	1	ANNOTATIONS MUST BE USED Throughout question, ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW partial reduction (ie reduction of either C=O group) [H] implies reduction [O] implies oxidation reduced AND reagent are both required for the mark
OR Meth	reagents and observation hylglyoxal is oxidised by H ₂ SO ₄ AND K ₂ Cr ₂ O ₇ ✓ Pervation: turns green OR blue ✓ Provided by Tollens' reagent ✓ Pervation: Silver (mirror) ✓	2	ALLOW link to equation with [H] for reduction ALLOW LiAlH ₄ as alternative for NaBH ₄ ALLOW any recognisable attempt at name IGNORE any reference to acids oxidised AND reagent are both required for the mark ALLOW link to equation with [O] for oxidation ALLOW Na ₂ Cr ₂ O ₇ instead of K ₂ Cr ₂ O ₇ ALLOW H ⁺ AND Cr ₂ O ₇ ²⁻ OR H ⁺ AND CrO ₄ ²⁻ If name given, ALLOW dichromate OR dichromate(VI) ALLOW acidified dichromate ALLOW any strong acid If formulae used, formulae must be correct ALLOW AgNO ₃ in ammonia OR ammoniacal AgNO ₃ ALLOW oxidised by manganate Observation: decolourised Note: If one reaction is identified as oxidation, assume the
	Total	5	other is reduction (and vice versa)

Q	Question		Answer	Mark	Guidance
5	(a)		idea of separating (the components/compounds) ✓ idea of (identifying compounds) by comparison with a (spectral) database ✓	2	ALLOW (identifies compounds) using fragmentation (patterns)/fragment ions (but IGNORE molecular ions) ✓ Note: Each marking point does not need to be linked to GC or MS (The question asks about GC–MS as a combined technique)
	(b)	(i)	54.2% of 118 OR 54.2/118 x 100 = 64/63.96 (hence there are 4 oxygens) ✓		IGNORE calculation that proves that $C_4H_6O_4$ has a molar mass of 118 (ie 12 x 4 + 6 x 1 + 16 x 4) ALLOW 64/118 x 100 = 54.2% for 1st mark IGNORE method using empirical formula
			118 – 64 = 54 hence 4 carbon (48) and 6 hydrogen (6) ✓	2	ALLOW any reasonable working leading to 4C Note: 54.2(%) ÷ 16 would not get the 1st mark but the answer could be used to get the 2nd mark
		(ii)	carboxyl group OR carboxylic acid ✓ must be name (in question)	1	IGNORE working, e.g. O-H, C=O, C-O on IR spectrum

C	Questi	on	Answer	Mark	Guidance
5	(c)	(i)	Chemical shifts Any two peaks identified for 1 mark \checkmark peak at δ = 0.8 ppm due to R–CH / CH ₃ CH peak at δ = 3.4 ppm due to HC–C=O peak at δ = 11 ppm due to COOH / carboxylic acid	1	ANNOTATIONS MUST BE USED CHECK SPECTRUM for responses ANNOTATE with '^' For peak at $(\delta =)$ 0.8 (ppm), ALLOW doublet and vice versa For peak at $(\delta =)$ 3.4 (ppm), ALLOW quartet ' and vice versa For peak at $(\delta =)$ 11 (ppm), ALLOW singlet and vice versa
			Splitting quartet shows adjacent CH₃ OR 3 adjacent Hs ✓ doublet shows adjacent CH OR 1 adjacent H ✓	2	ALLOW peak at δ = 2.4 ppm for peak at δ = 3.4 ppm ALLOW tolerance on δ values: ± 1 ppm For quartet, ALLOW quadruplet
			Identification	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)	(CD ₃) ₂ SO / D / It does not absorb OR does not give a peak ✓	1	ALLOW (CD ₃) ₂ SO / does not contain H ALLOW undeuterated solvents would absorb OR give peaks ALLOW responses in terms of (CH ₃) ₂ SO producing peaks but IGNORE number of peaks
		(iii)	TMS is the standard (for chemical shift measurements) ✓	1	ALLOW TMS is the reference OR TMS has $\delta = 0$ (ppm) OR for calibration IGNORE unreactive, volatile, it gives a sharp peak
		(iv)	peak at δ = 11.0 (ppm) disappears \checkmark	1	ALLOW COOH (peak) disappears ALLOW OH (peak) disappears
			Total	12	

Q	uestic	on	Answer	Mark	Guidance
6	(a)	(i)	H ₂ N C O CH ₃ HOOC	1	Circles can be around C OR CH atoms but must not include other atoms ALLOW any suitable way of highlighting chiral carbons, e.g. asterisk, * Note : Mark the circles and ignore other working on diagram
		(ii)	carboxyl OR carboxylic acid, amine, amide, ester must be names 2 marks for 4 correct functional groups ✓ ✓ 1 mark for 3 correct functional groups ✓	2	ALLOW peptide for amide
	(b)		H ₃ N COOH CH ₂ HOOC CH ₂ HOOC CH ₂ CH ₂ CH COOH 1 mark for left-hand amino acid with NH ₃ ⁺ OR NH ₂ ✓ 1 mark for right-hand amino acid with NH ₃ ⁺ OR NH ₂ ✓ 1 mark for both amino acids shown with NH ₃ ⁺ ✓	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW + charge on H of NH ₃ groups, ie NH ₃ ⁺ Note: If there are more than three structures shown, credit any correct structures and ignore incorrect structures

F324 Mark Scheme June 2011

Question		on	Answer	Mark	Guidance
6	(c)		(adverse) side effects OR toxicity OR irritation ✓	1	ALLOW a stated adverse side effect, eg allergy, carcinogenic, hyperactivity etc IGNORE references to optical isomers, chirality, etc
					IGNORE vague statements such as harmful to body, dangerous to body
					DO NOT ALLOW obesity, corrosive to body
					ALLOW company liable to litigation/damages
					Note : Scroll down to bottom of page to check for any further writing
			Total	8	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

