Mark Scheme 4724 January 2007

4724	Mark Scheme	r		January 2007
1	Factorise numerator and denominator	M1		or Attempt long division
	Num = $(x+6)(x-4)$ or denom = $x(x-4)$	A1		$\text{Result} = 1 + \frac{6x - 24}{r^2 - 4r}$
	Final answer = $\frac{x+6}{x}$ or $1 + \frac{6}{x}$	A1	3	$= 1 + \frac{6}{x}$
2	Use parts with $u = \ln x$, $dv = x$	M1		& give 1 st stage in form $f(x) + /-\int g(x)(dx)$
	Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 (dx)$	A1		or $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x(dx)$
	$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 (+c)$	A1		
	Use limits correctly	M1	_	
	Exact answer $2 \ln 2 - \frac{3}{4}$	A1	5	AEF ISW
3	(i) Find $a - b$ or $b - a$ irrespective of label	M1		(expect $11i - 2j - 6k$ or $-11i + 2j + 6k$)
	Method for magnitude of any vector	M1		
	$\sqrt{161} \text{ or } 12.7(12.688578)$	A1	3	
	(ii) Using $(\overline{AO} \text{ or } \overline{OA})$ and $(\overline{AB} \text{ or } \overline{BA})$	B1		Do not class angle <i>AOB</i> as MR
	$\cos \theta = \frac{\text{scalar product of any two vectors}}{\text{product of their moduli}}$	M1		
	43 or better (42.967), 0.75 or better (0.7499218)Al	3	If 137 obtained, followed by 43, award A0 Common answer 114 probably \rightarrow B0 M1 A0
4	Attempt to connect dx and du	M1		but not just $dx = du$
	For $du = 2 dx$ AEF correctly used	A1		sight of $\frac{1}{2}$ (du) necessary
	$\int u^8 + u^7 \left(\mathrm{d} u \right)$	A1		or $\int u^7 (u+1) (\mathrm{d}u)$
	Attempt new limits for u at any stage (expect 0,1)	M1		or re-substitute & use $(\frac{5}{2},3)$
	<u>17</u> 72	A1		AG WWW
	S.R. If M1 A0 A0 M1 A0, award S.R. B1 for answe	$r \frac{68}{72}, \frac{34}{36}$ or	$\frac{17}{18}$	ISW
5	(i) Show clear knowledge of binomial expansion	M1		-3x should appear but brackets can be
	= 1 + x	B1		missing; $-\frac{1}{3}$. $-\frac{4}{3}$ should appear, not $-\frac{1}{3}$. $\frac{2}{3}$ Correct first 2 terms; not dep on M1
	-1+x $+2x^2$	Al		Correct mist 2 terms, not dep on wri
	$+\frac{14}{3}x^3$	A1	4	
	(ii) Attempt to substitute $x + x^3$ for x in (i)	M1		Not just in the $\frac{14}{3}x^3$ term
	Clear indication that $(x + x^3)^2$ has no term in x^3	A1		
	$\frac{17}{3}$	$\sqrt{A1}$	3	f.t. $\operatorname{cf}(x) + \operatorname{cf}(x^3)$ in part (i)
6	(i) $2x+1 = / = A(x-3) + B$	M1		
	$\begin{array}{l} A=2\\ B=7 \end{array}$	A1 A/B 1	2	Cover-up rule acceptable for B1
	(ii) $\int \frac{1}{x-3} (dx) = \ln(x-3) \operatorname{or} \ln x-3 $	А/Б I B1	3	Accept A or $\frac{1}{A}$ as a multiplier
	$\int \frac{1}{(x-3)^2} (dx) = -\frac{1}{x-3}$	B1		Accept <i>B</i> or $\frac{1}{B}$ as a multiplier
	6 + 2 ln 7 Follow-through $\frac{6}{7}B + A \ln 7$	√B2	4	

4724	Mark Scheme			January 2007
7	$\frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y \frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	$4x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$	B1		
	Put $\frac{dy}{dx} = 0$	*M1		
	Obtain $4x + y = 0$ AEF	A1		and no other (different) result
	Attempt to solve simultaneously with eqn of curve	dep*M1		
	Obtain $x^2 = 1$ or $y^2 = 16$ from $4x + y = 0$	A1		
	(1,-4) and $(-1,4)$ and no other solutions	A1	8	Accept $(\pm 1, \mp 4)$ but not $(\pm 1, \pm 4)$
8	(i) Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ and $-\frac{1}{m}$ for grad of normal	M1		or change to cartesian., diff & use $-\frac{1}{m}$
	= -p AG WWW	A1	2	Not $-t$.
	(ii) Use correct formula to find gradient of line	M1		
	Obtain $\frac{2}{p+q}$ AG WWW	A1	2	Minimum of denom = $2(p-q)(p+q)$
	(iii) State $-p = \frac{2}{p+q}$	M1		Or find eqn normal at P & subst $\left(2q^2,4q ight)$
	Simplify to $p^2 + pq + 2 = 0$ AG WWW	A1	2	With sufficient evidence
	(iv) $(8,8) \rightarrow t$ or p or $q = 2$ only	B1		No possibility of -2
	Subst $p = 2$ in eqn (iii) to find q_1	M1		Or eqn normal, solve simult with cartes/param
	Subst $p = q_1$ in eqn (iii) to find q_2	M1		Ditto
	$q_2 = \frac{11}{3} \rightarrow \left(\frac{242}{9}, \frac{44}{3}\right)$	A1	4	No follow-through; accept (26.9, 14.7)
9	(i) Separate variables as $\int \sec^2 y dy = 2 \int \cos^2 2x dx$	M1		seen or implied
	LHS = $\tan y$	A1		
	RHS; attempt to change to double angle Correctly shown as $1 + \cos 4x$	M1 A1		
	$\int \cos 4x dx = \frac{1}{4} \sin 4x$	A1		
	Completely correct equation (other than $+c$)	A1		$\tan y = x + \frac{1}{4}\sin 4x$
	+c on either side	A1	7	<u>not</u> on both sides unless c_1 and c_2
	(ii) Use boundary condition	M1		provided a sensible outcome would ensue
	c (on RHS) = 1	A1		or $c_2 - c_1 = 1$; not fortuitously obtained
	Substitute $x = \frac{1}{6}\pi$ into their eqn, produce $y = 1.05$	A1	3	or 4.19 or 7.33 etc. Radians only
10	(i) For (either point) + t (diff between posn vectors)	M1	2	" r =" not necessary for the M mark
	$\mathbf{r} = (\text{either point}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \text{ or } -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ (ii) $\mathbf{r} = s(\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \text{ or } (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$	A1 B1	2	but it is essential for the A mark Accept any parameter, including <i>t</i>
	Eval scalar product of $i+2j-k$ & their dir vect in (i)	M1		
	Show as $(1x1 \text{ or } 1)+(2x-2 \text{ or } -4)+(-1x-3 \text{ or } 3)$ = 0 and state perpendicular AG	A1 A1	4	This is just one example of numbers involved
	(iii) For at least two equations with diff parameters	M1	-	e.g. $5 + t = s$, $2 - 2t = 2s$, $-9 - 3t = -s$
	Obtain $t = -2$ or $s = 3$ (possibly -3 or 2 or -2)	A1		Check if $t = 2,1$ or -1
	Subst. into eqn AB or OT and produce $3\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A1	3	
	(iv) Indicate that $ OC $ is to be found	M1		where <i>C</i> is their point of intersection
	$\sqrt{54}$; f.t. $\sqrt{a^2 + b^2 + c^2}$ from $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in (iii)	√A1	2	I

In the above question, accept any vectorial notation t and s may be interchanged, and values stated above need to be treated with caution.

In (iii), if the point of intersection is correct, it is more than likely that the whole part is correct – but check.

4724

Mark Scheme

January 2007