

General Certificate of Education Advanced Subsidiary Examination June 2012

Mathematics

MM1B

Unit Mechanics 1B

Thursday 24 May 2012 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g = 9.8 \text{ m s}^{-2}$, unless stated otherwise.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.
- Unit Mechanics 1B has a written paper only.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

2

1	As a boat moves, it travels at 5 m s^{-1} due north, relative to the water. moving due west at 2 m s^{-1} .	The water is
(a)	Find the magnitude of the resultant velocity of the boat.	(2 marks)
(b)	Find the bearing of the resultant velocity of the boat.	(3 marks)

2 Two toy trains, A and B, are moving in the same direction on a straight horizontal track when they collide. As they collide, the speed of A is 4 m s^{-1} and the speed of B is 3 m s^{-1} . Immediately after the collision, they move together with a speed of 3.8 m s^{-1} .

The mass of A is 2 kg. Find the mass of B. (3 marks)

- **3** A car is travelling at a speed of 20 m s^{-1} along a straight horizontal road. The driver applies the brakes and a constant braking force acts on the car until it comes to rest.
 - (a) Assume that no other horizontal forces act on the car.
 - (i) After the car has travelled 75 metres, its speed has reduced to 10 m s^{-1} . Find the acceleration of the car. (3 marks)
 - (ii) Find the time taken for the speed of the car to reduce from 20 m s^{-1} to zero. (2 marks)
 - (iii) Given that the mass of the car is 1400 kg, find the magnitude of the constant braking force. (2 marks)
 - (b) Given that a constant air resistance force of magnitude 200 N acts on the car during the motion, find the magnitude of the constant braking force. (1 mark)

Find θ .

(a)

(3 marks)

3

4 A particle, of weight W newtons, is held in equilibrium by two forces of magnitudes 10 newtons and 20 newtons. The 10-newton force is horizontal and the 20-newton force acts at an angle θ above the horizontal, as shown in the diagram. All three forces act in the same vertical plane.

- (b) Find W. (2 marks)
 (c) Calculate the mass of the particle. (2 marks)
- 5 A block, of mass 12 kg, lies on a horizontal surface. The block is attached to a particle, of mass 18 kg, by a light inextensible string which passes over a smooth fixed peg. Initially, the block is held at rest so that the string supports the particle, as shown in the diagram.

The block is then released.

- (a) Assuming that the surface is smooth, use two equations of motion to find the magnitude of the acceleration of the block and particle. (4 marks)
- (b) In reality, the surface is rough and the acceleration of the block is 3 m s^{-2} .
 - (i) Find the tension in the string. (3 marks)
 - (ii) Calculate the magnitude of the normal reaction force acting on the block. (1 mark)
 - (iii) Find the coefficient of friction between the block and the surface. (5 marks)
- (c) State two modelling assumptions, other than those given, that you have made in answering this question. (2 marks)

Turn over ▶

4

6 A child pulls a sledge, of mass 8 kg, along a rough horizontal surface, using a light rope. The coefficient of friction between the sledge and the surface is 0.3. The tension in the rope is *T* newtons. The rope is kept at an angle of 30° to the horizontal, as shown in the diagram.

Model the sledge as a particle.

- (a) Draw a diagram to show all the forces acting on the sledge. (1 mark)
- (b) Find the magnitude of the normal reaction force acting on the sledge, in terms of T. (3 marks)
- (c) Given that the sledge accelerates at 0.05 m s^{-2} , find *T*. (6 marks)
- 7 A particle moves with a constant acceleration of $(0.1\mathbf{i} 0.2\mathbf{j}) \,\mathrm{m \, s^{-2}}$. It is initially at the origin where it has velocity $(-\mathbf{i} + 3\mathbf{j}) \,\mathrm{m \, s^{-1}}$. The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively.
 - (a) Find an expression for the position vector of the particle *t* seconds after it has left the origin. (2 marks)
 - (b) Find the time that it takes for the particle to reach the point where it is due east of the origin. (3 marks)
 - (c) Find the speed of the particle when it is travelling south-east. (6 marks)

8

5

A particle is launched from the point A on a horizontal surface, with a velocity of 22.4 m s^{-1} at an angle θ above the horizontal, as shown in the diagram.

After 2 seconds, the particle reaches the point C, where it is at its maximum height above the surface.

- (a) Show that $\sin \theta = 0.875$. (3 marks)
- (b) Find the height of the point C above the horizontal surface. (3 marks)
- (c) The particle returns to the surface at the point *B*. Find the distance between *A* and *B*. (3 marks)
- (d) Find the length of time during which the height of the particle above the surface is greater than 5 metres. (5 marks)
- (e) Find the minimum speed of the particle. (2 marks)

Copyright ${\ensuremath{{\odot}}}$ 2012 AQA and its licensors. All rights reserved.

