4730

Mark Scheme

June 2010

1			For triangle with two of its sides marked
		M1	$0.8 \ge 10.5$ and $0.8 \ge 8.5$ (or 10.5 and 8.5) or for using I = Δmv in one direction.
	For included angle marked α or for	1/11	of for using $\Gamma = \Delta m v$ in one direction.
	$\begin{array}{l} 0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta \\ \text{For opposite side marked 4/0.8 (or 4) or for} \end{array}$	A1	Allow B1 for omission of 0.8
	$-0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8 For using the cosine rule or for eliminating
		M1	β
	$8.4^2 + 6.8^2 - 2x8.4x6.8\cos\alpha = 4^2$	A1ft	ft 0.8 mis-used or not used
	$\alpha = 28.1^{\circ}$	A1	
		[6]	
2(i)	$[100a = 2aV_B]$	M1	For taking moments about A for AB
	Vertical component at B is 50 N	A1	
	Vertical component at C is 150 N	A1	
		[3]	
(ii)			For taking moments about B for BC (3
			terms needed) or about A for the whole (4
		M1	terms needed)
	$100(0.5a) + (\sqrt{3}a)F = 150a$ or		
	$100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	
	Frictional force is 57.7 N	A1	
	Direction is to the right	B1 [4]	
3(i)	u = 4	B1	
5(1)	v = 2	B1	
	v = 2	[2]	
		[-]	
(ii)			For using the principle of conservation of
		M1	momentum or for using NEL with $e = 1$
	mu = ma + mb (or $u = b - a$)	A1	
	u = b - a (or $mu = ma + mb$)	B1	
	$a = 0$ and $b = 4ms^{-1}$	A1ft	ft incorrect u
	Speed of A is $2ms^{-1}$ and direction at 90° to the wall	A1ft	ft incorrect v
	Speed of B is 4ms^{-1} and direction parallel to	Am	
	the wall	A1ft	ft incorrect u
		[6]	it inconcer u
		[~]	
4(i)			For using Newton's second law (1 st or 2 nd
	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	stage)
			For attempting to integrate (1 st stage) and
			using $v(0) = 0$ (may be implied by the
		M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$	A1	
	$[v(12) = 1.92]_{2}$	M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$		For using Newton's second law (2 nd stage)
	$v = t^3 / 1800 - 12t / 50 + C_2]$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$	M1	For using $v(12) = 1.92$
	$v = t^3/1800 - 12t/50 + 3.84$	A1	
	$v(24) = 5.76 = 3 \times v(12)$	A1	AG
		[8]	

Mark Scheme

June 2010

(ii)	Sketch has $v(0) = 0$ and slope decreasing		
	(convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave upwords) for $12 < t < 24$	B1	
	upwards) for $12 < t < 24$ Sketch has v(t) continuous, single valued	DI	
	and increasing (except possibly at $t = 12$)		
	with v(24) seen to be $> 2v(12)$	B1	
		[3]	
5(i)	For using amplitude as a coefficient of a	D1	
	relevant trigonometric function. For using the value of ω as a coefficient of t	B1	
	in a relevant trigonometric function.	B1	
	$x_1 = 3 \text{ cost}$ and $x_2 = 4 \text{ cos} 1.5 \text{ t}$	B1	
		[3]	
(ii)			For using distance travelled by P_2 for
	Part distance is 20m	M1 A1	$0 < t < 5\pi/3$ is $5A_2$
		AI	For subtracting displacement of P_2 when
	[20 - (-3.62)]	M1	t = 5.99 from part distance.
	Distance travelled by P_2 is 23.6 m	A1	L
		[4]	
(iii)		M1	For differentiating x_1 and x_2
	$\dot{x}_1 = -3$ sint; $\dot{x}_2 = -6$ sin1.5t	A1	For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867, v_2 = -2.55$; opposite directions	A1	
		[4]	
	Alternative for (iii):		
		M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
	$v_1^2 = 3^2 - 2.87^2$, $v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	to find values of x)
	$[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$		For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \Rightarrow v_2 < 0$]	M1	changes sign at intervals of T/2 s
	$v_1 = 0.867, v_2 = -2.55$; opposite directions	<u>A1</u>	
6(i)	PE loss at lowest allowable point = $25W$	B1	Equation EE $(2\pi^2/(2\mathbf{I}))$ may be seened in
		M1	For using $EE = \lambda x^2/(2L)$; may be scored in (i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	
	8		For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
(ii)	[800 = 32000x/20]	[5] M1	For using W = $\lambda x/L$ at max speed
(11)	[000 - 52000/20]	1111	For using the principle of conservation of
		M1	energy (3 terms required)
	$\frac{1}{2}(800/9.8)v^2$		
	$= 800 \text{ x } 20.5 - 32000 \text{ x} 0.5^2 / (2 \text{ x} 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1 [4]	
(iii)		<u> [+]</u>	For applying Newton's second law to
()		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \text{ x } 5/20$	A1	
	Max. deceleration is 88.2 ms^{-2}	A1	
		[3]	

Mark Scheme

June 2010

7(i)	$\begin{bmatrix} \frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m } 6^2 = \text{mg}(0.7) \end{bmatrix}$ Speed of P before collision is 7.05ms ⁻¹ Coefficient of restitution is 0.695	M1 A1 B1ft [3]	For using the principle of conservation of energy for P (3 terms needed) ft 4.9 ÷ speed of P before collision
(ii)	$[\frac{1}{2} \text{ mv}^{2} = \frac{1}{2} \text{ m } 4.9^{2} - \text{mg} 0.7(1 - \cos \theta)]$ v ² = 3.43(3 + 4 \cos \theta)	M1 A1 M1	For using the principle of conservation of energy for Q Accept any correct form For using Newton's second law radially with $a_r = v^2/r$
	$T - \operatorname{mgcos} \theta = \operatorname{mv}^2 / 0.7$ [T - m9.8cos θ = m3.43(3 + 4 cos θ)/0.7] Tension is 14.7m(1 + 2cos θ)N	A1 M1 A1 [6]	For substituting for v ² AG
(iii)	T = 0 $\Rightarrow \theta$ = 120° Radial acceleration is (±)4.9 ms ⁻¹ or transverse acceleration is (±)8.49 ms ⁻¹ Radial acceleration is (±)4.9 ms ⁻¹ and transverse acceleration is (±)8.49 ms ⁻¹	B1 M1 A1 B1 [4]	For using $a_r = -g\cos\theta$ {or $3.43(3 + 4\cos\theta)/0.7$ } or $a_t = -g\sin\theta$
			SR for candidates with a sin/cos mix in the work for M1 A1 B1 immediately above. (max. 1/3) Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$\begin{bmatrix} V^2 = 3.43\{3 + 4(-0.5)\}x0.5^2 \text{ or} \\ V^2 = (-9\cos 120^\circ x \ 0.7) \ x \ \cos^2 60^\circ \end{bmatrix}$ $V^2 = 0.8575$ $\begin{bmatrix} mgH = \frac{1}{2} \ m(4.9^2 - 0.8575) \ \text{or} \\ mg(H - 1.05) = \frac{1}{2} \ m(3.43 - 0.8575) \end{bmatrix}$ Greatest height is 1.18 m	M1 A1 M1 A1 [4]	For using $V = v(120^{\circ}) \times cos60^{\circ}$ AG For using the principle of conservation of energy