Version 1.0 0110

General Certificate of Education

Mathematics 6360

MPC1 Pure Core 1

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is	for method and	accuracy					
Е	mark is for explanation							
√or ft or F	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within	FW	further work					
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
−x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

 $\verb|www.qyconsult.com||$

MPC1 - AQA GCE Mark Scheme 2010 January series	
--	--

MPC1	0.1.4	M. 1	m. · ·	G
Q	Solution (2) (2) 12(2) 12	Marks	Total	Comments
1(a)	$p(-3)=(-3)^3-13(-3)-12$	M1		must attempt $p(-3)$ NOT long division
	=-27+39-12		2	
	$=0 \implies x+3 \text{ is factor}$	A1	2	shown =0 plus statement
	,			
(b)	$(x+3)(x^2+hx+c)$	M1		Full long division, comparing coefficients
(6)	$(x+3)(x^2+bx+c)$ $(x^2-3x-4) \text{ obtained}$ $(x+3)(x-4)(x+1)$	IVII		or by inspection either $b=-3$ or $c=-4$
	(x^2-3x-4) obtained	A1		or M1A1 for either $(x-4)$ or $(x+1)$
	()	711		clearly found using factor theorem
	(x+3)(x-4)(x+1)	A1	3	CSO; must be seen as a product of 3
				factors NMS full marks for correct product
				SC B1 for $(x+3)(x-4)($
				, , , , , ,
				or $(x+3)(x+1)(x+1) = 0$
	Total		5	or $(x+3)(x+4)(x-1)$ NMS
				Δv
2(a)(i)	$grad AB = \frac{7-3}{3-1}$	M1		$\frac{\Delta y}{\Delta x}$ correct expression, possibly implied
	$= 2 \qquad \text{(must simplify 4/2)}$	A1	2	
(ii)	grad $BC = \frac{7-9}{3+1} = -\frac{2}{4}$	3.41		Candana ana dia
(11)	grad $BC = \frac{3+1}{3+1} = \frac{3}{4}$	M1		Condone one slip
	1.0			NOT Pythagoras or cosine rule etc
	grad $AB \times \text{grad } BC = -1$ $\Rightarrow \angle ABC = 90^{\circ} \text{ or } AB \& BC \text{ perpendicular}$	A1	2	convincingly proved plus statement
	⇒ ZABC = 90 of AB & BC perpendicular	711	2	SC B1 for -1/(their grad <i>AB</i>)
				or statement that $m_1 m_2 = -1$ for
				perpendicular lines if M0 scored
				perpendicular fines if two secred
(b)(i)	M(0,6)	B2	2	B1 + B1 each coordinate correct
(ii)	(AB^2-) $(3-1)^2+(7-3)^2$			
	$(AB^2 =)$ $(3-1)^2 + (7-3)^2$ $(BC^2 =)$ $(3+1)^2 + (7-9)^2$	M1		either expression correct, simplified or
	$(BC^2 =) (3+1)^2 + (7-9)^2$			unsimplified
	$AB^2 = 2^2 + 4^2$ or $BC^2 = 4^2 + 2^2$			Must see either $AB^2 =$, or $BC^2 =$,
	or $\sqrt{20}$ found as a length	A1		1.1235 300 Oldier 115, 01 50,
	$AB^2 = BC^2 \implies AB = BC$			
	}	A1	3	
	or $AB = \sqrt{20}$ and $BC = \sqrt{20}$			
/***	$grad BM = \frac{7-6}{3-0}$	M1		ft their <i>M</i> coordinates
(iii)				
	or $-1/(\operatorname{grad} AC)$ attempted			
	$=\frac{1}{3}$	A1		correct gradient of line of symmetry
	· ·			
	BM has equation $y = \frac{1}{3}x + 6$	A1	3	CSO, any correct form
	Total		12	

Q Q	Solution	Marks	Total	Comments
	$dv = 4t^3$	M1		one term correct
3(a)(i)	$\frac{dy}{dt} = \frac{4t^3}{8} - 4t + 4$	A1		another term correct
	dt 8	A1	3	all correct (no + c etc) unsimplified
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{12t^2}{8} - 4$	M1		ft one term "correct"
		A1	2	correct unsimplified (penalise inclusion of +c once only in question)
(b)	$t=2; \frac{\mathrm{d}y}{\mathrm{d}t} = 4-8+4$	M1		Substitute $t = 2$ into their $\frac{dy}{dt}$
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 0 \Rightarrow \text{ stationary value}$	A1		CSO; shown = 0 plus statement
	$t=2; \frac{d^2y}{dt^2} = 6 - 4 = 2$	M1		Sub $t = 2$ into their $\frac{d^2 y}{dt^2}$
	$\Rightarrow y$ has MINIMUM value	A1	4	CSO
(c)(i)	$t=1; \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{2} - 4 + 4$	M1		Substitute $t = 1$ into their $\frac{dy}{dt}$
	$=\frac{1}{2}$	A1	2	OE; CSO
	2			NMS full marks if $\frac{dy}{dt}$ correct
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}t} > 0 \Rightarrow \text{(depth is)} \text{ INCREASING}$	E1√	1	allow decreasing if states that their $\frac{dy}{dt} < 0$
				Reason must be given not just the word increasing or decreasing
	Total		12	
4(a)	$\sqrt{50} = 5\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$; $\sqrt{8} = 2\sqrt{2}$ At least two of these correct	M1		or $\times \frac{\sqrt{8}}{\sqrt{8}}$ or $\left(\times \frac{\sqrt{2}}{\sqrt{2}}\right)$ or $\sqrt{\frac{25}{4}} + \sqrt{\frac{9}{4}}$
	$\frac{5\sqrt{2}+3\sqrt{2}}{2\sqrt{2}}$	A1		any correct expression all in terms of $\sqrt{2}$ or with denominator of 8, 4 or 2
				simplifying numerator eg $\frac{\sqrt{400} + \sqrt{144}}{8}$
	Answer = 4	A1	3	CSO
(b)	$\frac{\left(2\sqrt{7}-1\right)\left(2\sqrt{7}-5\right)}{\left(2\sqrt{7}+5\right)\left(2\sqrt{7}-5\right)}$	M1		OE
	$numerator = 4 \times 7 - 2\sqrt{7} - 10\sqrt{7} + 5$	m1		expanding numerator (condone one error or omission)
	denominator = 3	B1		(seen as denominator)
	Answer = $11-4\sqrt{7}$	A1	4	, , , , , , , , , , , , , , , , , , , ,
ļ	Total		7	

Q	Solution	Marks	Total	Comments
5(a)	$x^2 - 8x + 15 + 2$	B1		Terms in x must be collected, PI
	their $(x-4)^2$ $(+k)$	M1		ft $(x-p)^2$ for their quadratic
	$=(x-4)^2+1$	A1	3	ISW for stating $p = -4$ if correct expression seen
(b)(i)	y ↑ /	M1		∪ shape in any quadrant (generous)
	17 1- 0 4 x	A1		correct with min at (4, 1) stated or 4 and 1 marked on axes condone within first quadrant only
		В1	3	crosses y-axis at (0, 17) stated or 17 marked on y-axis
(ii)	y = k	M1		y = constant
	y=1	A1	2	Condone $y = 0x + 1$
(c)	Translation (not shift, move etc)	E1		and no other transformation
	with vector $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	M1		One component correct or ft either their p or q
	[1]	A1	3	CSO; condone 4 across, 1 up; or two separate vectors etc
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\frac{dy}{dx} = 24x - 19 - 6x^2$	M1		2 terms correct
		A1		all correct (no + c etc)
	when $x=2$, $\frac{dy}{dx} = 48 - 19 - 24$	m1		
	\Rightarrow gradient = 5	A1	4	CSO
(ii)	grad of normal $=-\frac{1}{5}$	B1√		ft their answer from (a)(i)
	$y+6 = \left(their - \frac{1}{5}\right)(x-2)$ or $y = \left(their - \frac{1}{5}\right)x + c$ and c evaluated using $x = 2$ and $y = -6$	M1		ft grad of their normal using correct coordinates BUT must not be tangent condone omission of brackets
	x+5y+28=0	A1	3	CSO; condone all on one side in different order
(b)(i)		M1		one term correct
(6)(1)	$\frac{12}{3}x^3 - \frac{19}{2}x^2 - \frac{2}{4}x^4$	A1		another term correct
	3 2 4	A1		all correct (ignore $+c$ or limits)
	=32-38-8	m1		F(2) attempted
	= -14	A1	5	CSO; withhold A1 if changed to +14 here
(ii)	Area $\Delta = \frac{1}{2} \times 2 \times 6 = 6$	B1		condone -6
	Shaded region area =14-6	M1		difference of $\pm \int \pm \Delta $
	= 8	A1	3	CSO
	Total		15	

Q	Solution	Marks	Total	Comments
7(a)(i)	$x = \pm 2$ or $y = \pm 6$ or $(x-2)^2 + (y+6)^2$	M1		
	C(2,-6)	A1	2	correct
(ii)	$(r^2 =) 4 + 36 - 15$	M1		(RHS =) their $(-2)^2$ + their $(6)^2$ – 15
	$\Rightarrow r=5$	A1	2	Not ± 5 or $\sqrt{25}$
(b)	explaining why $ y_c > r$; 6 > 5	E1		Comparison of y_C and r , eg $-6 + 5 = -1$ or indicated on diagram
	full convincing argument, but must have correct y_C and r	E1	2	Eg "highest point is at $y = -1$ " scores E2
	concer's and s			E1: showing no real solutions when $y = 0$ +E1 stating centre or any point below x-axis
(c)(i)	$(PC^2 =) (5-2)^2 + (k+6)^2$			ft their C coords
	$=9+k^2+12k+36$	M1		and attempt to multiply out
	$PC^2 = k^2 + 12k + 45$	A1	2	AG CSO (must see PC^2 = at least once)
(ii)	$PC > r \Rightarrow PC^2 > 25$ $\Rightarrow k^2 + 12k + 20 > 0$	B1	1	AG Condone $\begin{cases} k^2 + 12k + 45 > 25 \\ \Rightarrow k^2 + 12k + 20 > 0 \end{cases}$
(iii)	(k+2)(k+10)	M1		Correct factors or correct use of formula
(111)	k=-2, k=-10 are critical values	A1		May score M1, A1 for correct critical values seen as part of incorrect final answer with or without working.
	Use of sketch or sign diagram:			
	-10 -2 + - + + -10 -2	M1		If previous A1 earned, sign diagram or sketch must be correct for M1, otherwise M1 may be earned for an attempt at the sketch or sign diagram using their critical values.
	$\Rightarrow k > -2, k < -10$	A1	4	$k \geqslant -2$, $k \leqslant -10$ loses final A mark
	Condone $k > -2$ OR $k < -10$ for full marks but not AND instead of OR Take final line as their answer			Answer only of $k > -2$, $k > -10$ etc scores M1, A1, M0 since the critical values are evident. Answer only of $k > 2$, $k < -10$ etc scores M0, M0 since the critical values are not
				both correct.
	Total		13	
	TOTAL		75	

Deleted: ¶

Page 4: [1] Deleted cway 21/05/2009 09:02:00
--

XMCA2

XN	MCA2			
Q	Solution	Marks	Total	Comments
1(a)	$x = -\frac{3}{2}$	B1		Seeing $-\frac{3}{2}$ OE
	$p(-1.5) = 2(-1.5)^4 + 3(-1.5)^3 - 8(-1.5)^2 - 14(-1.5) - 3$	M1		Attempting to evaluate p(-1.5 or p(1.5)
	p(-1.5) = 10.125-10.125-18+21-3 = 0] so $(2x + 3)$ is a factor of $p(x)$]	A1	3	CSO Need both the arithme to show '= 0' and the
(b)(i)	$x^3-4x-1=0 \Rightarrow x(x^2-4)-1=0 \Rightarrow x^2-4=\frac{1}{x}$	M1		conclusion. Dividing throughout by <i>x</i> OE
	$x^2 = \frac{1}{x} + 4 \implies x = \sqrt{\frac{1}{x} + 4} \text{(since } x > 0\text{)}$	A1	2	CSO
(ii)	$x_2 = 2.1213$ $x_3 = 2.1146$ $x_4 = 2.1149$	B1 B1 B1	3	AWRT 2.121 AWRT 2.1146 CAO
	Total		8	
2(a)	$\frac{5+x}{(1-x)(2+x)} = \frac{A}{1-x} + \frac{B}{2+x}$ $\Rightarrow 5+x = A(2+x) + B(1-x)$	M1		Either multiplication by denominator or cover up rule attempted.
	Substitute $x = 1$; Substitute $x = -2$	m1		Either use (any) two values of to find <i>A</i> and <i>B</i> or equate coefficients to form and attent to solve <i>A</i> - <i>B</i> =1 and 2 <i>A</i> + <i>B</i> =5
(b)(i)	A = 2, $B = 1(1-x)^{-1} = 1 + (-1)(-x) + px^2$	A1 M1	3	<i>p</i> ≠ 0
	$= 1 + x + x^2 \dots$	A1	2	
(ii)	$2^{-1} \left[1 + \frac{x}{2} \right]^{-1} = \frac{1}{2} \left[1 + (-1) \left(\frac{x}{2} \right) + \frac{(-1)(-2)}{2!} \left(\frac{x}{2} \right)^2 + \dots \right]$	M1		$\left[1+(-1)\left(\frac{x}{2}\right)+kx^2\right]$
		A1		Correct expn of $\left(1+\frac{x}{2}\right)^{-1}$
	$\frac{5+x}{(1-x)(2+x)} = 2(1-x)^{-1} + (2+x)^{-1}$	M1		Using (a) with powers '-1'. P
	$= 2(1+x+x^2) + \frac{1}{2}\left(1-\frac{x}{2}+\frac{x^2}{4}+\right)$	m1		Dep on prev 3Ms
	$= 2.5 + 1.75x + 2.125x^2 + \dots$	A1F	5	Ft only on wrong integer value for A and B, ie simplified (A+1/2B)+(A-1/4B)x+(A+1/8 [Award equivalent marks for other valid methods.]
	Total		10	

Page Break-

XMCA2 (cont)

	A2 (cont)		r	Γ.
Q	Solution	Marks	Total	Comments
3(a)(i)	37	M1		Modulus graph
	0 TT 2TT 2	A1	2	Correct shape including cusp at $(\pi, 0)$. Ignore any part of graph beyond $0 \le x \le 2\pi$.
(ii)	k = 1	B1	1	0-A-27.
(b)	3	M1		Two branch curve, general shape correct.
	0 1 3 3 3 1 X	A1		Min at $(\alpha, 1)$ Max at $(\beta, 1)$ with α roughly halfway between 0 and π , and β roughly halfway between and 2π and curve asymptotic to $x = 0$, $x = \pi$ and $x = 2\pi$.
			2	
	Total		5	
4(a)	$\frac{dy}{dx} = \frac{(x+2)3e^{3x} - e^{3x}(1)}{(x+2)^2}$	B1 M1 A1	3	$(e^{3x})' = 3e^{3x}$ Quotient rule OE
(b)	When $x = 0$, $\frac{dy}{dx} = \frac{6e^0 - e^0}{2^2} = \frac{5}{4}$	M1 A1F		Attempt to find dy/dx at x=
	$A\left(0,\frac{1}{2}\right)$	B1		
	Equation of tangent at A: $y - \frac{1}{2} = \frac{5}{4}(x - 0)$	A1	4	ACF
	Total		7	

Q	Solution	Marks	Total	Comments
5	$V = \pi \int_0^1 \cos(x^2) \mathrm{d}x$	M1		$\int \cos(x^2) \mathrm{d}x$
		A1	1	Correct limits. (Condone kx or missing π until the final
				mark)

Applying Simpson's rule to $\int_0^1 \cos(x^2) dx$			
<i>x</i> 0 0.25 0.5 0.75 1	B1		PI
Y=y ² 1 0.9980(47) 0.9689(12) 0.8459(24) 0.5403(02) [π Y vals. 3.1415(9) 3.1354(5) 3.0439(2) 2.6575(5) 1.6974(0)]	B1		PI
$\frac{0.25}{3} \times \left\{ Y(0) + Y(1) + 4[Y(0.25) + Y(0.75)] + 2Y(0.5) \right\}$	M1		Use of Simpson's rule
$V = \pi \times \frac{10.8539}{12}$ So $V = 2.8416$ (to 4 d.p.)	A1	6	CAO
Total		6	

-----Page Break---

XMO	CA2 (cont)			
Q	Solution	Marks	Total	Comments
6(a)(i)	ln3	B2,1,0	2	B2 correct sketch-no part of curve in 2 nd ,3 rd or 4 th quadrants and 'ln3' (B1 for general shape in 1 st quadrant, ignore other quadrants; ln3 not required
(ii)	Range of f: $f(x) \ge \ln 3$	M1 A1	2	≥ln3 or >ln3 or f≥ln3 Allow y for $f(x)$.
(b)(i)	$y = f^{-1}(x) \implies f(y) = x$ $\implies \ln(2y + 3) = x$ $\implies 2y + 3 = e^{x}$ $f^{-1}(x) = \frac{e^{x} - 3}{2}$	M1 m1	3	$x \Leftrightarrow y$ at any stage Use of $\ln m = N \Rightarrow m = e^{t}$ ACF-Accept y in place of $f^{-1}(x)$
(ii)	Domain of f ⁻¹ is: $x \ge \ln 3$	B1F	1	ft on (a)(ii) for RHS
(c)	$\frac{\mathrm{d}}{\mathrm{d}x} \left[(\ln(2x+3)) \right] = \frac{1}{(2x+3)} \times 2$	M1 A1	2	1/(2 <i>x</i> +3)
(d)(i)	P , the pt of intersection of $y = f(x)$ and $y = f^{-1}(x)$, must lie on the line $y = x$; so P has coordinates (α, α) . $f(\alpha) = \alpha$	M1; M1		OE eg f ⁻¹ (α) = α
	$ln(2\alpha+3) = \alpha \implies 2\alpha+3 = e^{\alpha}$	A1	3	A.G. CSO

(ii)	$\frac{d}{dx} [f^{-1}(x)] = \frac{1}{2} e^{x}$ Product of gradients = $\frac{e^{x}}{2x+3}$ At $P(\alpha, \alpha)$, the product of the gradients	B1F		$\frac{e^{\alpha} - 3}{2} = \alpha \Rightarrow e^{\alpha} = 2\alpha + 3$
	is $\frac{e^{\alpha}}{2\alpha+3} = \frac{2\alpha+3}{2\alpha+3} = 1$	B1	2	AG CSO
	Total		15	

-----Page Break-

XMCA	A2 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \mathrm{e}^x + \mathrm{e}^x$.	M1 A1		M1 Product rule OE.
	At stationary point(s) $e^{x}(x + 1) = 0$ $e^{x} > 0$ Only one value of x for st. pt. Curve	m1 E1		OE eg accept e ^x ≠ 0
	has exactly one st pt Stationary point is (-1, - e ⁻¹)	A1 A1	6	CSO with conclusion.
(b)	Stationary point is $(-1, k - e^{-1})$	B1F		Or E1 for $y = x e^x$ to $y = x e^x + k$ is a vertical translation of k units.
	St. pt is on x-axis, so $k = e^{-1}$.	B1	2	Vertical translation of A drifts.
	Total	-	8	
8	$\int \frac{1}{y} \mathrm{d}y = \int \frac{\cos x}{6 + \sin x} \mathrm{d}x$	M1		Separating variables with intention to then integrate.
	$\ln y = \ln (6 + \sin x) (+c)$	A1 A1		A1 for each side. Condone missing '+c'
	$\ln 2 = \ln 6 + c$ $\ln y = \ln (6 + \sin x) + \ln 2 - \ln 6$	m1		Substituting $x = 0$, $y = 2$ to find c
	so $y = \frac{1}{3}(6 + \sin x)$	A1	5	Correct simplified form not involving logs
	Total	<u></u>	5	
9(a)	$y = e^{2x} \rightarrow e^{-2x} \rightarrow 6e^{-2x}$. Reflection; in the <i>y</i> -axis Stretch, (I) parallel to <i>y</i> -axis, (II) scale factor 6.	M1;A1 M1 A1	4	M1 'Stretch' with either (I) or (II).
				For correct alternatives to the stretch after writing $y = e^{-2x+\ln 6}$ award B1 for 'translation in <i>x</i> -dirn.' and B1 for the correct vector (OE) noting order of transformations.
(b)(i)	Area of rectangle/shaded region below x-axis = 3k	B1		

	Area of shaded region above <i>x</i> -axis	D4		
	$= \int_0^k 6e^{-2x} dx$	B1		
	$= \left[-3e^{-2x} \right]_0^k = -3e^{-2k} - (-3)$	M1 A1		F(k) - F(0) following an integration. ACF
	Total area of shaded region = $3k - 3e^{-2k} + 3 = 4$ $3k-1-3e^{-2k} = 0 \Rightarrow (3k-1)e^{2k} - 3 = 0$	M1 A1	6	AG CSO
(ii)	Let $f(k) = (3k - 1)e^{2k} - 3$ $f(0.6) = 0.8e^{1.2} - 3 = -0.3(4) < 0$	/ (1		
	$f(0.7) = 1.1e^{1.4} - 3 = 1.(46) > 0$	M1		Both f(0.6) and f(0.7) [or better] attempted
	Since change of sign (and f			AG Note: Must see the explicit
	continuous), $0.6 < k < 0.7$	A1	2	reference to 0.6 and 0.7 otherwise A0
	Total		12	

-----Page Break----

XMCA2 (cont)						
Q	Solution	Marks	Total	Comments		
10(a)	$\overrightarrow{AB} = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$	M1		M1 for $\pm (\overrightarrow{OB} - \overrightarrow{OA})$		
		A1		OE for BA		
	Line AB: $r = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$	B1F	3	OE Ft on \overrightarrow{AB}		
(b)	$\begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 3 + 2 + 4 = 9$	M1		$\pm \overrightarrow{AB} \bullet \text{ direction vector of } l \text{ evaluated}$		
	$\sqrt{3^2 + 1^2 + 4^2} = \sqrt{26};$ $\sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$	B1F		Either; Ft on either of c's vectors		
	$\sqrt{26}\sqrt{6}\cos\theta = 9$	M1		Use of $ a b \cos\theta = a \cdot b$		
	$\cos \theta = \frac{9}{\sqrt{26}\sqrt{6}} = \frac{9}{\sqrt{2}\sqrt{13}\sqrt{2}\sqrt{3}}$ $= \cos \theta = \frac{9}{2\sqrt{13}\sqrt{3}} = \frac{9}{2\sqrt{39}}$	A1	4	AG CSO		
(c)(i)	$\frac{B(S_i I_i \psi)}{A(2_i o_i o_i)}$					

	$\begin{bmatrix} 2+p \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} p-3 \end{bmatrix}$	M1		
	$\overrightarrow{BP} = \begin{bmatrix} 2+p\\2p\\p \end{bmatrix} - \begin{bmatrix} 5\\1\\4 \end{bmatrix} = \begin{bmatrix} p-3\\2p-1\\p-4 \end{bmatrix}$	A1		Condone one slip
	$\overrightarrow{BP} \bullet \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 0; 6p = 9 \Rightarrow p = 1.5$	M1 A1		" $\pm \overrightarrow{BP} \bullet$ direction vector of $l = 0$ ". Condone one slip
	P (3.5, 3, 1.5) is mid point of BC	A1	5	
(ii)	$\frac{x_C + 5}{2} = 3.5 \frac{y_C + 1}{2} = 3 \frac{z_C + 4}{2} = 1.5$	M1		
	⇒ C (2, 5, −1)	A1	2	Condone written as a column vector. Award equivalent marks for alternative valid methods.
	Total		14	

Page Break-----

11(a) sin sin (b) 2 2(3 2(3) 2si [2s] sin sin sin To 12(a)(i) u =	blution $n(2x + x) = \sin 2x \cos x + \cos 2x \sin x$ $= [2\sin x \cos x]\cos x + [1-2\sin^2 x]\sin x$ $= 2\sin x (1-\sin^2 x) + (1-2\sin^2 x)\sin x$ $= 2\sin x - 2\sin^3 x - \sin x - 2\sin^3 x$ $= 3\sin x - 4\sin^3 x$ $2\sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$ $\sin x = 0] (3 - 4\sin x)(1 + \sin x) = 0$	Marks M1 B1;B1 m1 A1 M1 A1	Total 5	Comments B1 for each []. Accept alternative correct forms for cos2x All in terms of sin x CSO Using (a) Equation in sin x
Sin Sin	$= [2\sin x \cos x]\cos x + [1-2\sin^2 x]\sin x$ $= 2\sin x (1-\sin^2 x) + (1-2\sin^2 x)\sin x$ $= 2\sin x - 2\sin^3 x - \sin x - 2\sin^3 x$ $\sin 3x = 3\sin x - 4\sin^3 x$ $2\sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3-\sin x - 4\sin^2 x) = 0$	B1;B1 m1 A1 M1 M1	5	correct forms for cos2x All in terms of sin x CSO Using (a)
(b) 2 2(3 2(3 2(3 2(3 2(3 2 2(3 2 2 2 2 2 2	$= 2\sin x (1-\sin^2 x) + (1-2\sin^2 x)\sin x$ $= 2\sin x - 2\sin^3 x - \sin x - 2\sin^3 x$ $\sin 3x = 3\sin x - 4\sin^3 x$ $2\sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	m1 A1 M1 M1	5	All in terms of sin x CSO Using (a)
(b) 2 2(3 2(3 2(3 2(3 2(3 2(3 2(3 2(3 2(3 2	$= 2\sin x - 2\sin^3 x - \sin x - 2\sin^3 x$ $n3x = 3\sin x - 4\sin^3 x$ $2 \sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	A1 M1 M1	5	All in terms of sin x CSO Using (a)
(b) 2 2(3 2(3 2(3 2(3 2(3 2(3 2(3	$= 2\sin x - 2\sin^3 x - \sin x - 2\sin^3 x$ $n3x = 3\sin x - 4\sin^3 x$ $2 \sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	A1 M1 M1	5	CSO Using (a)
(b) 2 2(3 2(3 2(3 2(3 2(3 2(3 2(3	$n3x = 3\sin x - 4\sin^3 x.$ $2 \sin 3x = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	M1 M1	5	Using (a)
(b) 2 2(3 2(3 2(3 2(3 2(3 2(3 2(3	$2 \sin 3x = 1 - \cos 2x$ $3 \sin x - 4 \sin^3 x) = 1 - \cos 2x$ $3 \sin x - 4 \sin^3 x) = 1 - (1 - 2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	M1 M1	5	Using (a)
2(3 2(3 2(3 2si [2s sin sin To 12(a)(i)	$3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	M1		• • •
2(3 2(3 2(3 2(3 2(3 2(3 2(3 2(3 2(3 2(3	$3\sin x - 4\sin^3 x) = 1 - \cos 2x$ $3\sin x - 4\sin^3 x) = 1 - (1-2\sin^2 x)$ $\sin x (3 - \sin x - 4\sin^2 x) = 0$	M1		• • •
2(3 2si [2s sin sin To 12(a)(i) u = du	$3\sin x - 4\sin^3 x$ = 1 - (1-2sin ² x) $\sin x$ (3 -sinx - 4sin ² x) = 0	M1		• • •
2si [2s] sin sin To 12(a)(i) $u = \frac{\mathrm{d}u}{\mathrm{d}u}$	$\sin x (3 - \sin x - 4\sin^2 x) = 0$			q
[2s sin sin To	,			
[2s sin sin To 12(a)(i) u = du	,	l i		
sir sin To 12(a)(i) u = du		m1		Factorising/solving quadratic in sin
sin sin To 12(a)(i)	e e ₁ (e)(e)	''''		T dotollonig/obliving quadratic in one
sin To 12(a)(i)	in $x = 0$; $x = 180^{\circ}$	B1		
To: 12(a)(i) u = du	$x = 0.75$; $x = 48.6^{\circ}$, 131.4°	A1		Ignore solns outside 0° <x<360°< td=""></x<360°<>
To 12(a)(i)				throughout
12(a)(i)	$x = -1$; $x = 270^{\circ}$	A1	7	
$u = \frac{\mathrm{d}u}{\mathrm{d}u}$	otal		12	
du	$= x$ and $\frac{\mathrm{d}v}{\mathrm{d}x} = \sec^2 x$	M1		Attempt to use parts formula in the 'correct direction'
$\frac{\mathrm{d}u}{\mathrm{d}x}$				
dχ	$\frac{u}{-}$ = 1 and v = tan x	A1		PI
	x	Ai		
	$\dots = x \tan x - \int \tan x dx$			
	J	A1		
		A1	4	OE CSO (Condone absence of
,	$= x \tan x - \ln(\sec x) + c$			+c)
(ii) ſ	$= x \tan x - \ln(\sec x) + c$	- 4 4		Use of identity 1 + $\tan^2 x = \sec^2 x$
]	$= x \tan x - \ln(\sec x) + c$ $x \tan^2 x dx = \int x(\sec^2 x - 1) dx$	M1		The state of the s

	= $[x \tan x - \ln (\sec x)] - \frac{1}{2}x^2$ (+ c)	A1F	2	[] ft on (a)(i)
(b)	$x = 2\sin\theta$, $dx = 2\cos\theta d\theta$	M1		" $dx = f(\theta) d\theta$ " OE
	$\int \sqrt{4-x^2} dx = \int \sqrt{4(1-\sin^2\theta)} 2\cos\theta d\theta$	m1 A1		Eliminating all x's
	$= \int 4\cos^2\theta d\theta = \int 2(\cos 2\theta + 1) d\theta$	m1		Use of $\cos 2\theta$ to integrate $\cos^2\theta$.
	$= \sin 2\theta + 2\theta + c$ $= 2\sin \theta \sqrt{1 - \sin^2 \theta} + 2\theta + c$	A1F		Ft a slip
	$= x\sqrt{1 - \frac{x^2}{4}} + 2\sin^{-1}\left(\frac{x}{2}\right) (+ c)$	A1	6	ACF (accept unsimplified)
	Total		12	

XMCA2	2 (cont)			
Q	Solution	Marks	Total	Comments
13	$x = 3t + t^3 \qquad \qquad y = 8 - 3t^2$			
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 + 3t^2 \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -6t$	M1		Both attempted and at least one correct.
	dv - 6t	M1		Chain rule.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6t}{3+3t^2}$	A1		
		B1		
	At $P(-4, 5)$, $t = -1$ At $P(-4, 5)$, $\frac{dy}{dx} = \frac{6}{3+3} = 1$			
	At $P(-4, 5)$, $\frac{1}{dx} = \frac{1}{3+3} = 1$			
	Gradient of normal at P is −1	M1		
	Eqn of normal at P: $y-5=-1(x+4)$	A1		ACF
	y + x = 1			
	Normal cuts curve C when			
	$8 - 3t^2 + 3t + t^3 = 1$	M1		
	$\Rightarrow t^3 - 3t^2 + 3t + 7 = 0$	A1		
	$\Rightarrow (t+1)(t^2-4t+7)=0$ (*)	m1		
	$(t^2 - 4t + 7) = 0$ has no real solutions since $(-4)^2 < 4(1)(7)$. t = -1 is only real solution of (*) so	M1		
	normal only cuts C at P , where $t = -1$	E1	4.4	
	ie the normal does not cut C again.		11	
	Total		11	