

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

CH4

Section A

Q.1 (a) Reagent(s): (aqueous) sodium hydroxide followed by acid (1)

[IF NO ACID LISTED IN REAGENT, THEN EQUATION SHOULD CONTAIN SODIUM SALTS] (1) [3]

- (b) (i) Reagent(s): (aqueous) bromine (1)
 Observation(s): Changes from orange to colourless (1) [2]
 - (ii) Nickel / Platinum / Palladium [1]
 - (iii) Moles of hydrogen gas = $1.15 \div 24.0 = 4.79 \times 10^{-2} \text{ mol (1)}$ Moles of stearic acid produced = $4.79 \times 10^{-2} \div 2 = 2.40 \times 10^{-2} \text{ mol (1)}$ Mass of stearic acid = $2.40 \times 10^{-2} \times 284 = 6.80 \text{ g (1)}$ [3]
- (c) (i) $C 69.7 \div 12 = 5.808$ $H 11.7 \div 1.01 = 11.584$ $O 18.6 \div 16 = 1.163$ (1) Empirical formula = $C_5H_{10}O$ (1) [2] (ii) $C_{10}H_{20}O_2$ [1]
- (d) e.g. biodiesel is renewable/won't run out / carbon neutral do not accept 'produces less carbon dioxide' [1]

Total [13]

(a)	Chromo	ophore	[1]
(b)	(i)	Melting temperature lower than literature value / melting occurs over a temperature range	[1]
	(ii)	Identify percentage or amount of impurities (1) Identify the number of compounds present or number of impurities (1)	[2]
(c)	(i)	Acidified potassium dichromate (1) Heat and distil (1) do not accept 'reflux'	[2]
	(ii)	$M_{\rm r}$ of phenylmethanol = 108.08 $M_{\rm r}$ of benzenecarbaldehyde = 106.06 100% conversion would be $10.0 \div 108.08 \times 106.06 = 9.815$ g (1) 86% yield = $9.815 \times 86 \div 100 = 8.44$ g (1)	5 (1) [3]
	(iii)	Two resonances in the range 5.8-7.0 ppm (1) These are doublets (1) One singlet at around 11.0 ppm (1) All resonances have the same area (1)	[4]

Total [13]

© WJEC CBAC Ltd.

Q.2

Q.3 (a) Isomers [1]

(b) (i) Peak at 2500-3550 cm⁻¹ present in product but not reactant [1]

(ii) Add FeCl₃ (1) Forms a purple solution (1) do not accept 'precipitate' [2]

(iii) 1 mark for correct location of hydrogen bond; 1 mark for dipole OR lone pair e.g.

[2]

(c) Aromatic Claisen product is more acidic / better proton donor than product of 1,2-Wittig rearrangement (1)

The 1,2-Wittig rearrangement product is an alcohol, so the charge on the **anion** formed is localised / the **anion** is unstable (1)

The product of the aromatic Claisen rearrangement is a phenol, so the charge on the anion can be delocalised which stabilises it (1)

(Must be reference to 'anions'; (1) mark awarded for 'stability of anions' if no reference to delocalisation) [3]

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate [1]

(d) 1 mark for arrows in first stage; 1 mark for correct intermediate; 1 mark for arrow giving gain of proton in second stage (from HCN or from H⁺); 1 mark for bond polarity – max 3 marks; lose 1 if incorrect final structure

Mechanism: Nucleophilic addition (1)

Total [14]

[4]

Total Section A [40]

Q.4 (a) CH₃CH(CH₃)CH₂CI (1) AlCl₃ / FeCl₃ (1) Room temperature / in the dark (1) [3]

(b) (i) 2,4-DNP (1) Orange precipitate (1) [2]

(ii) Tollen's reagent (1) Silver mirror with **C**, no reaction with **B** (1) [2]

(c) Optical isomerism is where a molecule and its mirror image are different / non-superimposable (1)

Compound **C** has a chiral centre / 4 different groups attached to one carbon atom (1)

$$\begin{pmatrix} H_3C \\ H_3C \\ CH_2 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_2 \\ CH_3 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_2 \\ CH_3 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_2 \\ CH_3 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{pmatrix} \begin{pmatrix} CH_3 \\ CH_4 \\ CH_3 \\ CH_4 \\ CH_5 \\$$

The two isomers rotate the plane of polarised light in opposite directions (1) [4]

QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate (1) [1]

(d) Dilute acid (1) heat (1) hydrolysis (1) [3]

(e) Acidified potassium dichromate (VI) (1) / heat (1)

One step reactions are generally better as they have a better yield / there is waste in each stage (1)

Two step process may be cheaper / use more sustainable reagents/ may give a better yield in this case / produce less harmful waste materials / potassium dichromate may react with other parts of the molecule as well / may be easier to separate product (1)

Do not credit same idea twice e.g. if 'better yield' gains first mark, a different point is required to gain second mark [4]

QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [20]

[3]

[1]

Q.5 (a) (i) Both molecules have lone pairs on nitrogen (1)

The lone pairs can form (coordinate) bonds with H⁺ ions (1) [2]

- (ii) Lone pair on N in phenylamine is delocalised over benzene ring (1) therefore less able to accept H⁺ (1) [2]
- (iii) I Arrow in first step (1)

 Cation structure in second step (1)

 Arrow in second step (1)

$$O = N^{\stackrel{+}{=}} O$$

$$O = N^{\stackrel{+}{=}} O$$

$$O = N^{\stackrel{+}{=}} O$$

II (fractional) distillation / steam distillation

III Sn and conc. HCl (1) followed by NaOH (1) [2]

Ö

(ii) Addition polymerisation makes one product only /Condensation produces one product plus a small molecule like water (1)

Addition polymerisation uses one starting material / Condensation polymerisation has two different starting materials (1)

Addition polymerisation involves monomer with one functional group / Condensation polymerisation involves monomer with two functional groups
(1)

(max 2) [2]

(ii)
$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ N - C & C \\ \hline \\ H & H \end{array} \begin{array}{c} CH_3 \\ \hline \\ C - C \\ \hline \\ H & OH \end{array} \hspace{1cm} [2]$$

(iii) Alanine has strong (electrostatic) forces between the zwitterions (1)

Butanoic acid has hydrogen bonding between molecules / electrostatic forces in alanine are stronger than forces in butanoic acid (1)

, [2]

(iv) Soda lime (1)
$$CH_3CH_2NH_2$$
 (1) [2]

Total [20]

Total Section B [40]