更多咨询请登录

Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright $\ensuremath{\mathbb{C}}$ 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
-	$(OA^{2} =) 6^{2} + (-4)^{2} ; (OB^{2} =) (-2)^{2} + 7^{2}$	M1		either correct PI by 52 or 53 seen
_()	$(OA^2 =) 52$ and $(OB^2 =) 53$			
		A1		both correct values 52 or $\sqrt{52}$
	or $(OA =)\sqrt{52}$ and $(OB =)\sqrt{53}$			and 53 or $\sqrt{53}$ seen
	$OA = \sqrt{52}$ and $OB = \sqrt{53}$			or $OA^2 = 52$ and $OB^2 = 53$
	$\Rightarrow OA < OB$	A1	3	correct working + concluding statemen
				involving OA and/or OB
(b)(i)	grad $AB = \frac{7+4}{-2-6}$	M1		condone one sign error
	2 0			
	$=-\frac{11}{8}$	A1	2	
(ii)	y4 = 'their grad $AB'(x - 6)$			or $y =$ 'their grad AB ' $x + c$ and
()	or $y - 7 =$ 'their grad $AB'(x - 2)$	M1		attempt to find c using
				x = 6, $y = -4$ or $x = -2$, $y = 7$
	$y + 4 = -\frac{11}{8}(x-6)$ OE	A1		any correct form $eg = -\frac{11}{8}x + \frac{34}{8}$
	8 (****)			0 0
			_	but must simplify – – to +
	$\Rightarrow 11x + 8y = 34$	A1	3	condone $8y + 11x = 34$ or any multiple
				these equations
(c)	$(\text{grad } AC =) \frac{8}{11}$	B1√		FT -1 / 'their grad <i>AB</i> '
(-)	11			
	$\frac{4}{k-6}$ = 'their $\frac{8}{11}$ ' OE	M1		equating gradients; LHS must be corre and RHS is "attempt" at perp grad to A
	$\Rightarrow 2k - 12 = 11$			
	$\Rightarrow k = \frac{23}{2}$	Alcso	3	<i>k</i> = 11.5 OE
	Total		11	
Alternative: Eqn AC : $(y+4) = 'their \frac{8}{11}'(x-6)$ B1 \checkmark (11 $y=8x-92$) AND must sub $y=0$ for M1				
or $(y-0) = 'their \frac{8}{11}'(x-k) B1\sqrt{AND}$ must sub $x = 6$, $y = -4$ for M1				
	$\begin{array}{c} (y \ b) \\ 11 \end{array}$			· · · · · · · · · · · · · · · · · · ·

Q	Solution	Marks	Total	Comments
2(a)	(x-6)(x+2)	B1	1	ISW for $x = 6$, $x = -2$ etc
(b)	-2 -12 6 x			
	x = -2 $x = 6$	B1√		correct <i>x</i> values <i>or</i> FT 'their' factors (<i>x</i> -intercepts stated <i>or</i> marked on sketch) may be seen in (a)
	<i>y</i> = -12	B1		(stated or -12 marked on sketch)
	\cup – shaped curve	M1		approximately
	"correct" shape in all 4 quadrants with minimum to right of <i>y</i> -axis	A1	4	
(c)(i)	$(x-2)^2$	M1		<i>p</i> = 2
	$(x-2)^2 - 16$	A1	2	p=2 and $q=16$
(ii)	(Minimum value is) -16	B1√	1	FT ' their $-q$ '
(d)	Replacing each x by $x + 3$ OR adding 2 to their quadratic	M1		in original equation or 'their' completed square or factorised form or replacing y by $y - 2$
	$y = \left[(x+3)^{2} - 4(x+3) - 12 \right] + 2$ or $y = (x+1)^{2} - 14$ or $y = x^{2} + 2x - 13$ or $y - 2 = (x-3)(x+5)$	A1	2	OE any correct equation in x and y unsimplified
	Total		10	

Q	Solution	Marks	Total	Comments
3(a)(i)		B1	1	
(ii)	$(3\sqrt{2} - 1)^{2} = 'their 18' - 3\sqrt{2} - 3\sqrt{2} + 1$ $= 18 - 3\sqrt{2} - 3\sqrt{2} + 1$	M1 A1		FT their $(3\sqrt{2})^2$ $(=19-6\sqrt{2})$
	$(3+\sqrt{2})^2 = 9+3\sqrt{2}+3\sqrt{2}+2$	B1		$ \left(= 19 - 6\sqrt{2} \right) $ $ \left(= 11 + 6\sqrt{2} \right) $
	\Rightarrow Sum = 30	Alcso	4	
(b)	$\frac{4\sqrt{5} - 7\sqrt{2}}{2\sqrt{5} + \sqrt{2}} \times \frac{2\sqrt{5} - \sqrt{2}}{2\sqrt{5} - \sqrt{2}}$	M1		
	Numerator = 8 $(\sqrt{5})^2 - 4\sqrt{5}\sqrt{2} - 14\sqrt{5}\sqrt{2} + 7(\sqrt{2})^2$	m1		correct unsimplified $(=54-18\sqrt{10})$
	Denominator = $(2\sqrt{5})^2 - (\sqrt{2})^2$ = 18	B1		must be seen as denominator
	\Rightarrow Answer = 3 - $\sqrt{10}$	A1cso	4	must be seen as denominator
	Total		9	

Q	Solution	Marks	Total	Comments
		M1	1000	one term correct
4(a)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \int 5x^4 - 6x + 1$	Al		another term correct
(u)(l)	$\left(dx \right)$ on one of the second seco	A1	3	all correct (no $+ c$ etc)
			5	
(ii)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 20x^3 - 6$	B1√	1	FT 'their' $\frac{dy}{dr}$
	$\left(dx^{2}\right)$			dx
(b)	$x = -1 \Rightarrow \frac{dy}{dx} = 5(-1)^4 - 6(-1) + 1 (=12)$	M1		must sub $x = -1$ into 'their' $\frac{dy}{dx}$
	$\Rightarrow y = 12(x+1)$	A1cso	2	any correct form with $(x-1)$ simplified
				condone $y = 12x + c$, $c = 12$
(c)	$x = 1 \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 5 - 6 + 1$	M1		sub $x = 1$ into their $\frac{dy}{dx}$
	d <i>st</i>			dx
	$\frac{dy}{dx} = 0 \implies$ stationary point	Alcso		shown $= 0$ plus correct statement
				$d^2 y$
	when $x = 1$, $\frac{d^2 y}{dx^2} = 14$			or $\frac{d^2 y}{dx^2} = 20 - 6 > 0$
	\Rightarrow (<i>B</i> is a) minimum (point)	E1	3	\Rightarrow (<i>B</i> is a) minimum (point)
				must have correct $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for E1
	6 2 2	M1		one term correct
(d)(i)	$\frac{x^6}{6} - \frac{3x^3}{3} + \frac{x^2}{2} + 5x$	A1		another term correct
	6 3 2	A1		all correct (may have $+c$)
	$\left[\frac{1}{6} - 1 + \frac{1}{2} + 5\right] - \left[\frac{1}{6} + 1 + \frac{1}{2} - 5\right]$	m1		'their' $F(1) - F(-1)$ with powers of 1 and -1 evaluated correctly
	= 8	A1cso	5	
(ii)	'their answer to part (i)' -2	M1		
	\Rightarrow Area = 6	A1cso	2	
	Total		16	
<u> </u>	Total		10	l

MPC1 (cont) Q	Solution	Marks	Total	Comments
5(a)	$p(-2) = (-2)^3 + (-2)^2 c + (-2)d - 12$	M1		p(-2) attempted or
				long division by $x+2$ as far as remainder
	'their' $-8 + 4c - 2d - 12 = -150$	m1		putting expression for remainder $= -150$
	$\Rightarrow 2c - d + 65 = 0$	A1cso	3	AG terms all on one side in any order (check that there are no errors in working)
(b)	$p(3) = 3^3 + 3^2 c + 3d - 12$	M1		p(3) attempted or long division by $x-3$ as far as remainder
	9c + 3d + 15 = 0	A1	2	any correct equation with terms collected eg $3c+d=-5$
(c)	2c - d + 65 = 0 $3c + d + 5 = 0$ $\Rightarrow 5c = -70$	M1		Elimination of c or d
	$\Rightarrow c = -14$, $d = 37$ OE	A1	2	value of c or d correct unsimplified
	Total	A1	<u>3</u> 8	both <i>c</i> and <i>d</i> correct unsimplified
6(a)	Sides are x and $x + 4$ $\Rightarrow x + x + x + 4 + x + 4 > 30$ or $2x + 2x + 8 > 30$ or $2(2x + 4) > 30$ or $4x + 8 > 30$			must see this line OE
	$(\Rightarrow 4x > 22) \Rightarrow 2x > 11$	B1	1	AG (be convinced) condone $11 < 2x$
(b)	$x\left(x+4\right) < 96$			must see this line OE
	$\Rightarrow x^2 + 4x - 96 < 0$	B1	1	AG
(c)	(x+12)(x-8)	M1		correct factors or correct quadratic equation formula
	Critical values 8, -12	A1		equation formula
-	y or $+$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	M1		sketch or sign diagram
	$\Rightarrow -12 < x < 8$	A1cso	4	accept $x < 8$ AND $x > -12$ but not $x < 8$ OR $x > -12$ nor $x < 8$, $x > -12$
(d)	$5\frac{1}{2} < x < 8$	B1	1	
	<u> </u>		7	

MPC1 (cont)		[]		
Q	Solution	Marks	Total	Comments
7(a)	$(x+7)^2 + (y-5)^2$	M1		one term correct ; condone $(x7)^2$
		A1		both terms correct with squares
				and plus sign between terms
	$(x+7)^2 + (y-5)^2 = 5^2$	Alcao	3	condone 25 for 5^2
(b)(i)	C(-7,5)	B1√		correct or FT 'their' circle equation
(ii)	<i>r</i> = 5	B1√	2	correct or FT 'their' $r^2 > 0$ condone $\sqrt{25}$ etc but not $\pm \sqrt{25}$
(c)	must draw axes			
		M1		freehand circle with C correct or FT 'their C ' for quadrant of centre
		A1	2	circle touching x-axis at -7 with
				-7 marked (need not show 5 on y-axis)
	-7			but circle must not touch y-axis
(d)(i)	$x^{2} + (kx+6)^{2} + 14x - 10(kx+6) + 49 = 0$			clear attempt to sub $y = kx + 6$ into
				original or 'their' circle equation
	$x^{2} + k^{2}x^{2} + 12kx + 36 + 14x$	M 1		and attempt to multiply out
	-10kx - 60 + 49 = 0	M1		<i>and</i> attempt to multiply out
	$(1+k^2)x^2 + 2kx + 14x + 25 = 0$			
	$\Rightarrow (k^2 + 1)x^2 + 2(k+7)x + 25 = 0$	Alcso	2	AG condone $x^2(1+k^2) + 2x(7+k) +$ etc
(ii)	Equal roots $b^2 - 4ac = 0$	B1		allow statement alone if discriminant in terms of k attempted
	$\left\lceil 2(k+7) \right\rceil^2 - 4 \times 25(k^2+1)$	M1		discriminant (condone one slip)
	$4\left\{k^2 + 14k + 49 - 25k^2 - 25\right\} = 0$			
	$-24k^2 + 14k + 24 = 0$			
	$\Rightarrow 12k^2 - 7k - 12 = 0$	A1	3	AG all working correct but = 0 must appear before last line
(iii)	(AL+2)(2L-A)	3.61		
(111)	(4k+3)(3k-4)	M1		correct factors or correct use of
				formula as far as $k = \frac{7 \pm \sqrt{49 + 576}}{24}$
	$\Rightarrow k = -\frac{3}{4}, \ k = \frac{4}{3}$ OE	A1	2	
	4 3 are values of k for which line is a tangent			
	Total		14	
	TOTAL		75	