Mark Scheme 4721 January 2006

Mark Scheme

1	(i)	$x^{\frac{1}{3}} = 2$			(allow embedded values throughout
		$x^{*} = 2$ $x = 8$	B1	1	question 1) 8
	(ii)	$10^{t} = 1$. .	
		t = 0	B1	1	0
	(iii	$(y^{-2})^2 = \frac{1}{81}$ $y^{-4} = \frac{1}{81}$			
)				
		$y^{-4} = \frac{1}{81}$	D 1		
		$y = \pm 3$	B1 B1	2	y = 3 y = -3
2	(i)	$(3x+1)^2 - 2(2x-3)^2$	M1		Square to get at least one 3 or 4 term quadratic
		$= (9x^{2} + 6x + 1) - 2(4x^{2} - 12x + 9)$	A1		$9x^2 + 6x + 1$ or $4x^2 - 12x + 9$ soi
		$=x^{2}+30x-17$	A1	3	$x^2 + 30x - 17$
	(ii)	$2x^3 + 6x^3 + 4x^3 = 12x^3$	B1		$2 \text{ of } 2x^3, 6x^3, 4x^3 \text{ soi}$
					N.B. www for these terms, must be positive
		12	B1	2	12 or $12 x^3$
3	(i)	dv , 1 ,	B1		$15x^4$
5	(1)	$\frac{dy}{dx} = 15x^4 - \frac{1}{2}x^{-\frac{1}{2}}$	B1		$kx^{-\frac{1}{2}}$
			B1	3	
			21		$cx^4 - \frac{1}{2}x^{-\frac{1}{2}}$ only
	(ii)	$\frac{d^2 y}{dx^2} = 60x^3 + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their 2 term $\frac{dy}{dr}$ and
		άλ 4			get one correctly differentiated term
			A1	2	$60x^3 + \frac{1}{x}x^{-\frac{3}{2}}$
4	(i)		B1		4 Correct curve in one quadrant
		+	B1	2	Completely correct
			51	-	
	(ii)	· · · · · · · · · · · · · · · · · · ·	M1		Translate (i) horizontally
	. /				
			A1√	2	Translates all of their (i) $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$
		3			3 must be labelled or stated
	(iii	(One-way) stretch, sf 2, parallel	B1		Stretch
)	to the <i>y</i> -axis	B1 B1	3	(Scale) factor 2 Parallel to y-axis o.e.
					SR
					Stretch B1
					Sf $\sqrt{2}$ parallel to <i>x</i> -axis B2

Mark Scheme

5	(\mathbf{i})	$\langle \rangle$			2
5	(i)	$x^{2} + 3x = \left(x + \frac{3}{2}\right)^{2} - \frac{9}{4}$	B1		$a = \frac{3}{2}$
			B1	2	$b = -\frac{9}{4}$ o.e.
	(ii)	$y^{2}-4y-\frac{11}{4}=(y-2)^{2}-\frac{27}{4}$	B1		p = -2
		4 4 4	B1	2	$q = -\frac{27}{4}$ o.e.
	(iii)	Centre $\left(-\frac{3}{2},2\right)$	B 1√	1	$\left(-\frac{3}{2},2\right)$
		< - <i>/</i>			N.B. If question is restarted in this part, ft from part (iii) working only
	(iv)	$\text{Radius} = \sqrt{\frac{27}{4} + \frac{9}{4}}$	M1		$\sqrt{-their'b'-their'q'}$ or use $\sqrt{(f^2 + g^2 - c)}$
		$=\sqrt{9}$			2 (12 (10)
		= 3	A1	2	3 $(\pm 3 \text{ scores A0})$
6	(i)	$y = x^3 - 3x^2 + 4$			$3x^2-6x$
		dy a 2 a	B1		1 term correct
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x$	B1		Completely correct
		$3x^2 - 6x = 0$	M1		$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		3x(x-2) = 0	M1		Correct method to solve quadratic
		x = 0 x = 2	A1		x = 0, 2
		y = 4 y = 0	A1√	6	y = 4, 0
					SR one correct (x, y) pair www B1
	(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 6$	M1		Correct method to find nature of stationary points (can be a sketch)
		x = 0 $y'' = -6$ - ve max	B1		$x = 0 \max$
		x = 2 $y'' = 6$ + ve min	B1	3	$x = 2 \min$
					(N.B. If no method shown but both min and max correctly stated, award all 3 marks)
	(iii	Increasing	M1		Any inequality (or inequalities) involving
)	x < 0 $x > 2$	A1	2	both their <i>x</i> values from part (i) Allow $x \le 0$ $x \ge 2$

更多咨询请登录

4721

Mark Scheme

7	(i)	$x = \frac{8 \pm \sqrt{64 - 44}}{2}$	M1		Correct use of formula
		$x = \frac{2}{2}$ $= \frac{8 \pm \sqrt{20}}{2}$ $= 4 \pm \sqrt{5}$	A1 B1 A1	4	$\frac{8 \pm \sqrt{20}}{2} \text{ aef}$ $\sqrt{20} = 2\sqrt{5} \text{ soi}$ $4 \pm \sqrt{5}$
		$=4\pm\sqrt{3}$			$\frac{\text{Alternative method}}{(x-4)^2 - 16 + 11 = 0} \qquad \text{M1}$ $(x-4)^2 = 5 \qquad \text{A1}$ $x = 4 + \sqrt{5} \qquad \text{A1}$ or $4 - \sqrt{5} \qquad \text{A1}$
	(ii)	4-5^0.5 4+5^0.5	B1 B1√ B1	3	 +ve parabola Root(s) in correct places Completely correct curve with roots and (0, 11) labelled or referenced
	(iii)	$y = x^{2} = \left(4 \pm \sqrt{5}\right)^{2}$ $= 16 + 5 \pm 8\sqrt{5}$ $= 21 \pm 8\sqrt{5}$	M1 M1 A1√ A1	4	$y = x^2$ soi Attempt to square at least one answer from part (i) Correct evaluation of $(a + b\sqrt{c})^2$ $(a,b,c \neq 0)$ $21\pm 8\sqrt{5}$

Mark Scheme

8	(i)	$y = x^2 - 5x + 15$	M1		Attempt to eliminate <i>y</i>
		y = 5x - 10			
		$x^2 - 5x + 15 = 5x - 10$			$x^2 - 10x + 25 = 0$ AG
		$x^2 - 10x + 25 = 0$	A1	2	Obtained with no wrong working seen
	(ii)	$b^2 - 4ac = 100 - 100$			
		=0	B1	1	0 Do not allow $\sqrt{(b^2 - 4ac)}$
	(:::	I in a is a tag and to the avera	D14	1	Ton cont on (touches)
	(iii)	Line is a tangent to the curve	B1√	1	Tangent or 'touches' N.B. Strict ft from their discriminant
	<i>′</i>				
	(iv)	$x^2 - 10x + 25 = 0$	M1		Correct method to solve 3 term quadratic
		$\left(x-5\right)^2=0$			
		x = 5 $y = 15$	A1		<i>x</i> = 5
			A1	3	<i>y</i> = 15
	(v)	Gradient of tangent = 5	B1		Gradient of tangent = 5
		1			1
		Gradient of normal = $-\frac{1}{5}$	B1√		Gradient of normal = $-\frac{1}{5}$
		$y-15 = -\frac{1}{5}(x-5)$	M 1		Correct equation of straight line, any gradient, passing through (5, 15)
		x + 5y = 80	A1	4	x + 5y = 80

Mark Scheme

9	(i)	Length AC = $\sqrt{(8-5)^2+(2-1)^2}$	M1		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$=\sqrt{3^2+1^2}$			
		$=\sqrt{10}$	A1		$\sqrt{10}$ ($\pm \sqrt{10}$ scores A0)
		Length AB = $\sqrt{(p-5)^2 + (7-1)^2}$ = $\sqrt{(p-5)^2 + 36}$	A1		$\sqrt{(p-5)^2+(7-1)^2}$
		$\sqrt{(p-5)^2+36} = 2\sqrt{10}$	M1		AB = 2AC (with algebraic expression) used
		$p^{2}-10p+25+36 = 40$ $p^{2}-10p+21 = 0$ (p-7)(p-3) = 0	M1		Obtains 3 term quadratic = 0 suitable for solving <u>or</u> $(p-5)^2 = 4$
		<i>p</i> = 7,3	A1 A1	7	p = 7 $p = 3$
					SR <u>If no working seen</u> , and one correct value found, award B2 in place of the final 4 marks in part (i)
	(ii)	7 = 3x - 14 x = 7	M1 A1		Correct method to find x x = 7
		(5, 1) (7, 7)	M1		Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		Mid-point (6, 4)	A1√	4	(6, 4) or correct midpoint for their AB
					Alternative method y coordinate of midpoint = 4M1 A1sub 4 into equation of lineM1obtains $x = 6$ A1