1 （i）	$11^{-2}=\frac{1}{121}$	B1 1	$\frac{1}{121} \quad\left(\frac{1}{11^{2}}=\mathrm{BO}\right)$
（ii）	$100^{\frac{3}{2}}=1000$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Square rooting or cubing soi 1000
（iii）	$\sqrt{50}+\frac{6}{\sqrt{3}}$	B1	$5 \sqrt{2} \quad(\text { allow } \pm)$
	$\begin{aligned} & =5 \sqrt{2}+\frac{6 \sqrt{3}}{3} \\ & =5 \sqrt{2}+2 \sqrt{3} \end{aligned}$	M1 A1 3	Attempt to rationalise $\frac{6}{\sqrt{3}}$ cao
2	$q=2$	B1	（allow embedded values）
	$r=3$	B1	
		M1	$q r^{2}+10=p$ or other correct method
	$p=28$	$\mathrm{A} 1 \sqrt{4}$	
		4	
3（i）	$y=5 \sqrt{2 x}$	M1	$\sqrt{2 x} \text { or } \sqrt{\frac{x}{2}} \text { seen }$
		A1 2	$y=5 \sqrt{2 x}$
（ii）	Translation $\binom{0}{-3}$	B1	Translation
		$\text { B1 } 2$ 4	$\binom{0}{-3}$ o．e．

5			
（i）		B1	Correct curve in＋ve quadrant
		B1 2	in－ve quadrant
（ii）		M1	Positive cubic with clearly seen max and min points
		A1	$(-1,0) \quad(0,0) \quad(1,0)$ Any one point stated or marked on sketch
	$(-1,0)(0,0)(1,0)$	A1 3	Curve passes through all 3 points and no extras stated or marked on sketch
（iii）		B1	Graph only in bottom right hand quadrant
		B1 2	Correct graph，passing through origin
		7	

6 （i）	$49-4 \times-2 \times 3=73$	M1	Uses $b^{2}-4 a c$
	2 real roots	A1	
		B1 $\sqrt{ } 3$	2 real roots（ ft from their value）
（ii）	$(p+1)^{2}-64=0$ or $2\left[\left(x+\frac{p+1}{4}\right)^{2}-\frac{(p+1)^{2}}{16}+4\right]=0$	M1	Attempts $b^{2}-4 a c=0$ （involving p ）or attempts to complete square（involving p）
		A1	$(p+1)^{2}-64=0$ aef
	$p=-9,7$	B1	$p=-9$
		B1 4	$\mathrm{p}=7$
		$\underline{7}$	

9（i）	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x$	B1	$4 x$
（ii）	$\text { At } x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=12$	B1 2	12
	Gradient of tangent $=-8$	M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-8$
	$\begin{aligned} & 4 x=-8 \\ & x=-2 \end{aligned}$	A1	$x=-2$
	$y=8$	A1 3	$y=8$
（iii）	Gradient $=6$	B1 1	Gradient＝or approaches 6
（iv）	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$		$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 k x$
	$x=1$	M1	$\frac{d y}{d v}=2 k$
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 k \\ & k=3 \end{aligned}$	$\mathrm{A} 1 \sqrt{3}$	$k=3$ CWO
		9	

