

Chemistry A

Advanced Subsidiary GCE

Unit F321: Atoms, Bonds and Groups

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Mark Scheme

Annotation	Meaning
	Benefit of doubt given
(H•) II	Contradiction
×	Incorrect response
	Error carried forward
	Ignore
N.C.	Not answered question
NECE	Benefit of doubt not given
Falsand	Power of 10 error
	Omission mark
	Rounding error
	Error in number of significant figures
\checkmark	Correct response

Mark Scheme

Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be fully annotated with ticks, crosses, ecf etc to show where marks have been awarded in the body of the text:

3(c), 4(e)(iii) and 5(a)

Question		า	Answer	Marks	Guidance
1	(a)	(i)	Atom(s) of an element AND	1	 ALLOW for 'atoms of an element': Atoms of the same element OR atoms with the same number of protons OR atoms with the same atomic number
			with different numbers of neutrons (and with different masses) ✓		IGNORE 'different relative atomic masses' IGNORE different mass number IGNORE same number of electrons DO NOT ALLOW different numbers of electrons DO NOT ALLOW 'atoms of elements' for 'atoms of an element' DO NOT ALLOW 'an element with different numbers of neutrons' (ie atom(s) is essential)
		(ii)	ProtonsNeutronsElectrons7411074✓	1	
		(iii)	¹² C OR C-12 OR carbon 12 OR carbon-12 ✓	1	IGNORE 1/12 th AND amu
	(b)	(i)	<pre>(Oxidised): H (oxidation number has increased) from H = 0 to H = +1 ✓ (Reduced): W (oxidation number has decreased) from W = +6 to W = 0 ✓</pre>	2	ALLOW 6+ OR 6 OR 1+ OR 1 ALLOW one mark for correct oxidation number changes H = 0 to $H = +1$ AND $W = +6$ to $W = 0ALLOW oxidation states written above the equation if notseen in the text BUT IGNORE oxidation states written abovethe equation if seen in the textALLOW for one mark: (Oxidised) H has increased by 1 AND(Reduced) W has decreased by 6IGNORE WO3 is reducedIGNORE references to electron loss / gain if correctDO NOT ALLOW incorrect references to electron loss / gainDO NOT ALLOW 'H oxidised and W reduced' without$

Qu	Question		Answer	Marks	Guidance
1	(b)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 3.6(0) (dm ³) award 3 marks	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 if wrong M _r produces such numbers throughout. IF answer = 1.2(0) dm ³ award 2 marks (not multiplying by 3)
			Amount of WO ₃ = (11.59 / 231.8 =) 0.05(00) (mol) \checkmark		ALLOW use of inexact M_r (eg 232) – if it still gives 0.05
			Amount of $H_2 = 0.0500 \times 3 = 0.15(0) \pmod{4}$		ALLOW amount of $WO_3 \times 3$ correctly calculated for 2nd mark
			Volume of $H_2 = 0.150 \times 24.0 = 3.6(0) \text{ (dm}^3) \checkmark$		ALLOW amount of $H_2 \times 24.0$ correctly calculated for 3rd mark
					ALLOW 1 mark for incorrect amount of $WO_3 \times 24.0$ (not multiplied by 3 ie scores third mark only)
			Total	8	

F321

Question		n	Answer	Marks	Guidance
2	(a)		A shared pair of electrons ✓	1	DO NOT ALLOW 'shared electrons'
	(b)	(i)	Pairs of (electrons surrounding a central atom) repel ✓	2	ALLOW alternative phrases/words to repel eg 'push apart' ALLOW lone pairs repel OR bond(ing) pairs repel
			The shape is determined by the number of bond pairs AND the number of lone pairs (of electrons) ✓		ALLOW 'the number of bonding pairs and number of lone pairs decides the orientation of the surrounding atoms' ALLOW 'how many' for 'number of' ALLOW the second mark for a response which has 2 of the following including at least one shape involving lone pairs (of electrons) BUT mark incorrect responses first 2 bonding pairs = linear 3 bonding pairs = trigonal planar 4 bonding pairs = tetrahedral 6 bonding pairs = hexagonal 3 bonding pairs and 1 lone pair = pyramidal 2 bonding pairs and 2 lone pairs = non-linear IGNORE 'number of electron pairs decides shape of molecule' as this is in the question
		(ii)	$O-B-O = 120^{\circ} \checkmark$ B-O-H = 104.5° \checkmark	2	ALLOW 104–105°
	(c)		SF ₆ OR sulfur hexafluoride OR sulfur(VI) fluoride ✓	1	ALLOW XeF ₄ DO NOT ALLOW SC <i>I</i> ₆ DO NOT ALLOW stated complexes (simple molecule is asked for)
			Total	6	

F321

Question		n	Answer	Marks	Guidance
3	(a)		Energy (needed) to remove an electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	 ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks IGNORE 'element' ALLOW 'energy needed to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ ions' for two marks For third mark: ALLOW ECF if wrong particle is used in second marking point but is described as being gaseous eg 'molecule' instead of 'atom' IGNORE equations
	(b)	(i)	$O^+(g) \rightarrow O^{2+}(g) + e^- \checkmark$	1	ALLOW $O^+(g) - e^- \rightarrow O^{2+}(g)$ ALLOW e for electron (ie charge omitted) IGNORE states on the electron
		(ii)	x x x x x x x x x x x x x x	2	IGNORE the 2p/2s true jump IGNORE line if seen IGNORE 0, if included by candidate IGNORE missing 1 st IE point BUT DO NOT ALLOW first ionisation energy higher than second DO NOT ALLOW either mark if ionisations energies 3 to 8 inclusive are not shown Place tick for second mark on the x-axis between 6 and 7

Mark Scheme

Question		Answer		Guidance	
3	(c)		3	Use annotations ie ticks crosses ECF ^ etc for this part	
		Nuclear charge mark O has (one) less proton(s) OR O has smaller nuclear charge OR F has (one) more proton(s) OR F has greater nuclear charge ✓ Atomic radius/shielding mark (Outermost) electrons are in the same shell OR energy level		Comparison should be used for each mark. Look for ORA from perspective of F throughout. ALLOW all three marks applied to 'as you go across the period' BUT assume the response refers to 'as you go across the period' if not stated ALLOW O has lower proton number BUT IGNORE O has lower atomic number IGNORE O has a smaller nucleus IGNORE 'O has a smaller charge' ie must be nuclear charge IGNORE 'O has smaller effective nuclear charge' ALLOW sub-shell for shell but IGNORE orbitals	
		OR (Outermost) electrons experience the same shielding OR Atomic radius of O is larger OR Atomic radius of F is smaller ✓		ALLOW shielding is similar ALLOW outermost electrons of O are further DO NOT ALLOW 'distance is the same' for second mark	
		Nuclear attraction mark Less nuclear attraction (on outermost electrons) in O OR (outer) electrons are attracted less strongly (to the nucleus) in O OR More nuclear attraction (on outermost electrons) in F OR (outer) electrons are attracted more strongly (to the nucleus) in F \checkmark		ALLOW 'less nuclear pull' for 'less nuclear attraction' DO NOT ALLOW 'less nuclear charge' instead of 'less nuclear attraction' for the third mark IGNORE 'not pulled as close' for 'pulled less strongly'	

Question		n	Answer	Marks	Guidance
3	(d)		$1s^2 2s^2 2p^4$ AND $1s^2 2s^2 2p^6 \checkmark$	2	ALLOW subscripts, capitals
			(In the reaction) oxygen has formed a negative ion (by gaining (two) electrons) ✓		ALLOW oxidation number of oxygen has decreased ALLOW non metals form negative ions IGNORE oxygen has gained electrons (this is shown in the electron configurations)
	(e)	(i)	$SO_3^{2-} \checkmark$ $CIO_2^{-} \checkmark$	2	
		(ii)	Al(NO ₃) ₃ ✓	1	
		(iii)	Aluminium oxide OR aluminium hydroxide ✓	2	IGNORE correct formula (ie Al ₂ O ₃ or Al(OH) ₃) DO NOT ALLOW correct name with incorrect formula
			HNO₃ ✓		IGNORE correct name (ie nitric acid or nitric(V) acid) DO NOT ALLOW correct formula with incorrect name
					ALLOW one mark for Al_2O_3 or $Al(OH)_3$) AND nitric acid or nitric(V) acid (ie name answer and formulae answer has been transposed)
			Total	16	

Mark Scheme

Question		Answer	Marks	Guidance
Qu 4	estion (a)	Answer 2+ 2+ 2+ 2+ Barium ion 2+ 2+ 2+ 2+ 2+ Barium ion 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ (delocalised) electrons Diagram showing a regular arrangement of labelled 'Ba ²⁺ ions' or '2+ ions' and some attempt to show electrons ✓ Scattering of labelled electrons between other species	Marks 3	Guidance Regular arrangement must have at least two rows of correctly charged ions and a minimum of two ions per row ALLOW as label: positive ions, cations if correct charge is seen within circle ALLOW for labelled Ba ²⁺ ions: circles with Ba ²⁺ inside DO NOT ALLOW incorrect charge for ions eg + , 3+ etc DO NOT ALLOW for label of ions: nuclei OR positive atom OR protons ALLOW e ⁻ or 'e' or – as symbol for electron within the lattice for first marking point if not labelled as 'electrons'. ALLOW mobile or 'sea of' for delocalised
		AND statement anywhere of delocalised electrons (can be in text or in diagram) ✓ The attraction between (positive) ions and (delocalised) electrons is strong ✓		Quality of written communication: 'electron(s)' spelled correctly and used in context for the third marking point ALLOW a lot of energy is needed to break OR overcome the attraction between (positive) ions and (delocalised) electrons IGNORE 'heat' but ALLOW 'heat energy' DO NOT ALLOW references to incorrect particles or incorrect attractions eg 'intermolecular attraction' OR 'nuclear attraction' IGNORE 'strong metallic bonds' without seeing correct description of metallic bonding

Mark Scheme

Qu	estio	n	Answer	Marks	Guidance
4	(b)	(i)	Ba(s) + 2H ₂ O(I) → Ba(OH) ₂ (aq) + H ₂ (g) Ba(OH) ₂ as product \checkmark Rest of equation + state symbols \checkmark	2	ALLOW multiples
		(ii)	Any value or the range 7 < pH \leq 14 \checkmark	1	DO NOT ALLOW if pH 7 is in a quoted range
		(iii)	OH ⁻ OR HO ⁻ ✓	1	DO NOT ALLOW Ba ²⁺ DO NOT ALLOW any reference to electrons
	(c)		Magnesium hydroxide OR magnesium oxide ✓	1	ALLOW magnesium carbonate ALLOW correct formulae: Mg(OH) ₂ , MgO, MgCO ₃ IGNORE 'milk of magnesia'
	(d)	(i)	Effervescence OR fizzing OR bubbling OR gas produced AND	2	DO NOT ALLOW 'carbon dioxide produced' without 'gas' DO NOT ALLOW 'hydrogen gas produced' OR any other named gas
			Strontium carbonate OR solid dissolves OR disappears OR a colourless solution is formed ✓		ALLOW 'it' for strontium carbonate ALLOW strontium for strontium carbonate if SrCO ₃ seen in equation IGNORE 'reacts' IGNORE references to temperature change IGNORE 'steam produced'
			$SrCO_3 + 2HCI \rightarrow SrCI_2 + H_2O + CO_2 \checkmark$		IGNORE state symbols

F321

Qu	Question		Answer	Marks	Guidance
4	(d)	(ii)	$\begin{bmatrix} Sr \end{bmatrix}^{2+} \begin{bmatrix} c_{l} \\ c_{l} \end{bmatrix}^{-}$ Strontium ion with eight (or no) outermost electrons AND 2 x chloride (ions) with 'dot-and-cross' outermost octet \checkmark correct charges \checkmark	2	 For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW 2[Cl⁻] 2[Cl]⁻ [Cl⁻]₂ (brackets not required) DO NOT ALLOW [Cl₂]⁻ [Cl₂]²⁻ [2Cl]²⁻ [Cl]₂⁻
	(e)	(i)	The mixture would turn orange ✓	1	 ALLOW shades and colours containing (eg dark orange, yellow-orange) ALLOW the following: yellow, yellow-brown, brown, brown-red BUT DO NOT ALLOW red alone IGNORE initial colours DO NOT ALLOW any response that includes 'precipitate' OR solid
		(ii)	$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^- \checkmark$	1	ALLOW multiples IGNORE state symbols

F321	
I JZ I	

Qu	Question		Answer	Marks	Guidance
4	e	(iii)	<i>The electron</i> GAIN <i>mark</i> Chlorine will form a negative ion more easily than bromine OR Chlorine will gain an electron more easily than bromine ✓	4	Use annotations ie ticks crosses ECF ^ etc for this part Look for ORA from perspective of Br throughout. ALLOW all four marks applied to 'as you go up OR as you down the group' ALLOW C <i>l</i> for chlorine AND Br for bromine ALLOW ORA DO NOT ALLOW the use of 'ide' BUT ALLOW use of 'ide' as an ECF ALLOW chlorine is better at electron capture ALLOW chlorine has greater electron affinity IGNORE chlorine has more oxidising power than bromine IGNORE explanations given in terms of displacement
			 (An atom of) chlorine is smaller (than bromine) ✓ Shielding mark (Outermost shell of) chlorine is less shielded (than bromine) ✓ Stronger nuclear attraction mark 		ALLOW chlorine has fewer shells ALLOW the electron is added to the (outer) shell closer to the nucleus
			Nuclear attraction (on the electron to be gained) by chlorine is greater (than bromine) OR the electron (to be gained) is attracted more strongly (to the nucleus) in chlorine \checkmark		IGNORE 'easily' for 'greater' or for 'stronger' ALLOW 'chlorine has greater nuclear attraction (on its outermost electrons)' OR '(the outermost) electrons in chlorine are more attracted (to the nucleus)'
			Total	18	

Qu	estion	Answer	Marks	Guidance
5	(a)	F_2 forces mark F_2 has van der Waals' (forces)	4	Use annotations ie ticks crosses ECF ^ etc for this part
				ALLOW vdWs for van der Waals'
		F_2 has induced dipole attractions OR interactions		IGNORE F ₂ has covalent bond for this mark
		OR		IGNORE F_2 has 'intermolecular forces'
		F_2 has temporary OR instantaneous dipole(–dipole) attraction OR interactions \checkmark		
				Quality of written communication: 'dipole(s)' spelled correctly
		HCI forces mark		and used in context for the second marking point
		HCI has permanent dipole(–dipole) attractions OR		IGNORE HC/has 'intermolecular forces'
		interactions ✓		IGNORE van der Waals' forces in HCl
				DO NOT ALLOW hydrogen bonding
				DO NOT ALLOW IONIC bonding
		Comparison of strength of forces between molecules mark		Look for strength of force comparison anywhere in the
		Intermolecular force in HC/ is stronger than that in F_2		answer
		OR permanent dipoles are stronger (than induced dipoles)		than the stated intermolecular forces in E-
				BUT DO NOT ALLOW this mark if HC/or E_0 has covalent
				bonds broken OR if HC/has ionic bonds broken (the
				question asks for forces between molecules)
				IGNORE HC <i>l</i> has stronger van der Waals' (forces) than F_2
				(as they both have the same number of electrons)
		Boiling point mark		
		more energy is required to break stronger (intermolecular)		DO NOT ALLOW fourth mark if covalent bonds are broken in
		Torces ¥		$HCI \text{ or } F_2 \mathbf{UK}$ if ionic bonds are broken in HCI
				IGNORE 'heat' but ALLOW 'heat energy'

F321				Mark Scheme	
Question		n	Answer Mar		Guidance
5 (b) (i	(i)	<pre></pre>	2	Must be ' <i>dot-and-cross</i> ' Must be H ₃ O for either mark Circles for shells not needed IGNORE inner shells IGNORE lack of positive charge and square brackets	
			 Two <i>dot-and-cross</i> bonding pairs of electrons and one dative covalent bond pair of electrons consisting of either two dots or two crosses ✓ One non-bonding pair of electrons AND which match the dative covalent bond pair of electrons ✓ 		 DO NOT ALLOW second marking point if negative charge is shown on the ion Non-bonding electrons do not have to be seen as a pair ALLOW second mark for one non-bonding pair of electrons and three <i>dot-and-cross</i> bonding pairs of electrons

F321

Qu	estio	n	Answer	Marks	Guidance
5	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 7.624 OR 7.62 (g) award 3 marks	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			Molar mass of borax = 381.2 (g mol ⁻¹) \checkmark		ALLOW 381 DO NOT ALLOW 380
			Correctly calculates the mass of borax in 1000 cm ³ = 0.0800 x 381.2 = 30.496 g OR 30.50 g OR 30.5g ✓		ALLOW 0.0800 x [molar mass of borax] correctly calculated for 2nd mark (ie mass of borax in 1000 cm ³)
			Correctly calculates the mass of borax in 250 cm ³ = $30.496/4$		ALLOW [mass of borax in 1000 cm ³] / 4 correctly calculated for 3rd mark
			= 7.624 g OR 7.62 g v		ALLOW calculator value or rounding to three significant figures or more IGNORE (if seen) a second rounding error
			OR Molar mass of borax = $381.2 \text{ (g mol}^{-1}) \checkmark$		ALLOW 381 DO NOT ALLOW 380
			Amount of borax in 250 cm ³ of solution = 0.0800 x 250 /1000 = 0.02(00) mol \checkmark		ALLOW [incorrect amount of borax] x 381.2 OR [incorrect amount of borax] x [incorrect molar mass of borax] OR 0.02(00) x [incorrect molar mass of borax]
			Mass of borax = 0.02(00) x 381.2 of borax		correctly calculated for this mark
			= 7.624 g OR 7.62 g ✓		ALLOW calculator value or rounding to three significant figures or more
					IGNORE (if seen) a second rounding error

Mark Scheme

Question		n	Answer	Marks	Guidance
5	(d)	(i)	Correctly calculates the amount of borax used = 0.0800 x 22.5/1000 = $1.8(0) \times 10^{-3} \text{ mol } \mathbf{OR} \ 0.0018(0) \text{ mol } \checkmark$	1	
		(ii)	Correctly calculates the amount of HC <i>l</i> used = 1.8(0) x $10^{-3} \times 2 \mod$ = 3.6(0) x $10^{-3} \mod \mathbf{OR} \ 0.0036(0) \mod \checkmark$	1	 ALLOW [incorrect amount of borax] x 2 correctly calculated for the 2nd mark. ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
		(iii)	Correctly calculates the concentration of HCl = $3.6(0) \times 10^{-3} / (25 / 1000) = 0.144 \pmod{\text{mol dm}^{-3}}$	1	ALLOW [incorrect amount of HC <i>l</i>] / (25/1000) correctly calculated for the 3rd mark given to 3 SF
			Total	12	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

