Version 1.0: 0607

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MINIUS				
Q	Solution	Marks	Total	Comments
1(a)	$M T^{-2}$ [G]MM	M1		
	$MLT^{-2} = \frac{[G]MM}{L^2}$	A1		
	$[G] = L^{3}M^{-1}T^{-2}$	A1F	3	
(b)	$t = km^{\alpha} R^{\beta} G^{\gamma}$ T = M ^{\alpha} L ^{\beta} M ^{-\gamma} L ^{\beta} Y ^{-2\gamma}			
	$\mathbf{T} = \mathbf{M}^{\alpha} \mathbf{L}^{\beta} \mathbf{M}^{-\gamma} \mathbf{L}^{3\gamma} \mathbf{T}^{-2\gamma}$	M1		L, M, T for G are needed to gain M1
		A1F		
	$-2\gamma = 1 \Rightarrow \gamma = -\frac{1}{2}$			
	$\alpha - \gamma = 0 \implies \alpha = -\frac{1}{-1}$	m1		Getting 3 equations
	. 2	m1	-	Solution
	$\alpha - \gamma = 0 \implies \alpha = -\frac{1}{2}$ $\beta + 3\gamma = 0 \implies \beta = \frac{3}{2}$	A1F	5	Finding α, β, γ
	Total		8	

MM03

MM03 (cont)

Q	Solution	Marks	Total	Comments
2 (a)	$_{B}\mathbf{v}_{A}=\mathbf{v}_{A}-\mathbf{v}_{B}$			
	= $(20\mathbf{i} - 10\mathbf{j} + 20\mathbf{k}) - (30\mathbf{i} + 10\mathbf{j} + 10\mathbf{k})$	M1A1	2	Simplification not necessary
	= -10i - 20j + 10k			
(b)	${}_{B}\mathbf{r}_{0A} = (8000\mathbf{i} + 1500\mathbf{j} + 3000\mathbf{k}) -(2000\mathbf{i} + 500\mathbf{j} + 1000\mathbf{k}) = 6000\mathbf{i} + 1000\mathbf{j} + 2000\mathbf{k}$	M1		
	$\mathbf{r}_{A} = (6000\mathbf{i} + 1000\mathbf{j} + 2000\mathbf{k}) + (-10\mathbf{i} - 20\mathbf{j} + 10\mathbf{k})t + (-10\mathbf{i} - 20\mathbf{j} + 10\mathbf{k})t + (1000 - 20t)\mathbf{j} + (2000 + 10t)\mathbf{k}$	M1 A1F	3	Simplification not necessary
(c)	$ _{\rm B} \mathbf{r}_{\rm A} ^2 = (6000 - 10t)^2 + (1000 - 20t)^2 + (2000 + 10t)^2$	M1 A1F		
	The helicopters are closest when $ _{B}\mathbf{r}_{A} ^{2}$ is minimum. $y = (6000 - 10t)^{2} + (1000 - 20t)^{2} + (2000 + 10t)^{2}$ dv			
	$\frac{dy}{dt} = 2(-10)(6000 - 10t) + 2(-20)(1000 - 20t) + 2(10)(2000 + 10t) = 0$	m1 A1F		
	t = 100 Alternative: $(6000 - 10t) (-10)$	A1F	5	
	$ \begin{vmatrix} 1000 - 20t \\ 2000 + 10t \end{vmatrix} \cdot \begin{vmatrix} -20 \\ 10 \end{vmatrix} = 0 $	(M1) (A1F)		
	-60000 + 100t - 20000 + 400t + 20000 + 100t = 0	(m1) (A1F)		
	600t = 60000 t = 100	(A1F)	(5)	
	Total		10	

MM03 (cont				
Q	Solution	Marks	Total	Comments
3 (a)	$I = \int_{-\infty}^{3} (4t+5) dt$	M1		
	0	1011		
	$I = \int_{0}^{3} (4t+5) dt$ $= \left[2t^{2} + 5t \right]_{0}^{3}$	m1		Or evaluation of constant
	= 33 Ns	A1	3	
	Alternative :			
	I = Area under the Force–Time graph	(M1)		
	$= \frac{17+5}{2} \times 3$	(m1)		
	= 33 Ns	(A1)	(3)	
		(111)		
(b)	I = mv - mu			
	33 = 2v - 2(0)	M1		
	I = mv - mu 33 = 2v - 2(0) $v = 16.5 \text{ ms}^{-1}$	A1F	2	
(c)	$I = \int_{0}^{t} (4t+5)dt = 2(37.5) - 2(0)$ $2t^{2} + 5t - 75 = 0$ $t = \frac{-5 \pm \sqrt{25 + 8 \times 75}}{4}$	M1		
	${}^{0}_{2t^{2}} + 5t - 75 = 0$	A1		
	$t = -5 \pm \sqrt{25 + 8 \times 75}$			
		m1		
	<i>t</i> = 5	A1F	4	For one value of <i>t</i> identified only
4(-)	Total		9	
4(a)	Conservation of momentum :			
	$0.3(3) - 0.2(2) = 0.3v_A + 0.2v_B$	M1A1		
	$3v_A + 2v_B = 5$ (1)			
	Newton's experimental law :			
	$0.8 = \frac{v_B - v_A}{v_B - v_A}$			
	$0.8 = \frac{v_B - v_A}{5}$	M1		
	$v_B - v_A = 4$ (2) Solving (1) and (2)	A1		For both (1) and (2)
	Solving (1) and (2) $y_1 = 3.4$	m1		Dependent on both M1s
	$v_B = 3.4$ $v_A = -0.6$	A1F	6	For both solutions
	· _A 0.0			
(b)	$\rho = v$			
	$0.7 = \frac{v}{3.4}$	M1		
	<i>v</i> = 2.38	A1F		
	Speed of B (2.38) \succ Speed of A (0.6)			
	\therefore <i>B</i> collides again with <i>A</i>	E1	3	Cannot be gained without A1F
	Total		9	
	Total	1	フ	

Q	Solution	Marks	Total	Comments
5(a)	$y = ut\sin\alpha - \frac{1}{2}gt^2$	M1 A1		
	$\frac{2}{x = ut \cos \alpha}$	M1		
	$t = \frac{x}{1 + \frac{x}{1$	Al		
	$u\cos\alpha$	AI		
	$y = u \left(\frac{x}{u \cos \alpha}\right) \sin \alpha - \frac{1}{2} g \left(\frac{x}{u \cos \alpha}\right)^2$	M1		
	$y = x \tan \alpha - \frac{gx^2}{u^2 \cos^2 \alpha}$			
	$y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha)$	A1	6	Answer given
(b)(i)				
(b)(i)	$1 = R \tan \alpha - \frac{10R^2}{2\mu^2} (1 + \tan^2 \alpha)$	M1		
	$5R^{2} \tan^{2} \alpha - u^{2}R \tan \alpha + 5R^{2} + u^{2} = 0$	A1	2	Answer given
(ii)	For real solutions of the quadratic :			
	$u^4 R^2 - 20R^2 (5R^2 + u^2) \ge 0$	M1		
	$R^{2} \leq \frac{u^{4} - 20u^{2}}{100}$ $R^{2} \leq \frac{u^{2}(u^{2} - 20)}{100}$			
	$R^2 \le \frac{u^2(u^2 - 20)}{100}$	A1	2	Answer given
(iii)	$5^2 \le \frac{u^2(u^2 - 20)}{100}$			
	$u^4 - 20u^2 - 2500 \ge 0$	M1		Condone equation
	$u_{\min}^2 = 61.0$ (or $10 + \sqrt{2600}$)	A1		
	$u_{\min} = 7.81$	A1F	3	3 sf required
	Total		13	

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Before: $1^{u\sin 30^{\circ}}$ 1^{0}			
	After: $A u \cos 30^{\circ}$ $B = 0$ 0 0 0 0 0 0 0			
	$A \xrightarrow{V_A} B \xrightarrow{V_B}$ Con. of Mom. along the line of centres: $mu \cos 30^\circ = mv_A + mv_B$	M1		
	$v_A + v_B = \frac{\sqrt{3}}{2}u$ (1) Newton's experimental law :	A1		
	$e = \frac{v_B - v_A}{u \cos 30^\circ - 0}$	M1		
	$v_B - v_A = \frac{\sqrt{3}}{2}ue$ (2) Solving (1) and (2) :	A1		
	$v_{B} = \frac{\sqrt{3}}{4}u(1+e)$	A1	5	Answer given
(b)	$\perp u \sin 30^\circ = \frac{1}{2}u$ $\parallel v_A = \frac{\sqrt{3}}{2}u - \frac{\sqrt{3}}{4}u(1+e)$	B1		usin30 accepted
	$ \qquad v_{A} = \frac{\sqrt{3}}{2}u - \frac{\sqrt{3}}{4}u(1+e)$ $v_{A} = \frac{\sqrt{3}}{4}u(1-e)$	M1 A1F	3	Simplification not needed
(c)	$\alpha = \tan^{-1} \frac{\frac{1}{2}u}{\frac{\sqrt{3}}{4}u\left(1-\frac{2}{3}\right)}$	M1 A1F		
	$\alpha = \tan^{-1} \frac{6}{\sqrt{3}}$ $\alpha = 74^{\circ}$	A1F	3	To the nearest degree required
	Total		11	

MM03	(cont)

Q MM03 (cont	Solution	Marks	Total	Comments
7(a)	i			
	θ			
	$y = ut\sin\theta - \frac{1}{2}gt^2\cos\theta$	M1A1		
	$y=0 \implies t=\frac{2u\sin\theta}{g\cos\alpha}$	A1F		
	$x = ut\cos\theta - \frac{1}{2}gt^2\sin\alpha$	M1A1		
	$R = u \frac{2u\sin\theta}{g\cos\alpha}\cos\theta - \frac{1}{2}g\left(\frac{2u\sin\theta}{g\cos\alpha}\right)^2\sin\alpha$	M1		
	$R = \frac{2u^2 \sin\theta \cos(\theta + \alpha)}{g \cos^2 \alpha}$	m1 A1	8	Dependent on M1s Answer given
(b)	$R = \frac{2u^2 \times \frac{1}{2} [\sin(2\theta + \alpha) + \sin(-\alpha)]}{g \cos^2 \alpha}$ R is maximum when $\sin(2\theta + \alpha) = 1$ or $2\theta + \alpha = \frac{\pi}{2}$	B1 M1		
	$\therefore \theta = \frac{\pi}{4} - \frac{\alpha}{2}$	A1	3	Answer given
(c)	$y = 0 \implies t = \frac{2u\sin\theta}{g\cos\alpha}$ $\dot{x} = 0 \implies t = \frac{u\cos\theta}{g\sin\alpha}$ $\frac{2u\sin\theta}{g\cos\alpha} = \frac{u\cos\theta}{g\sin\alpha}$	M1 A2,1		For using $y=0$ and $\dot{x} = 0$ A2 for both correct
	$2\tan\theta = \cot\alpha$	A1	4	Answer given
				N.B. A problem arose which ultimately affected the marking of part 7(c). Please see the Report on the Examination for details.
	Total		15	
	TOTAL		75	