

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY - CH4

SUMMER 2014 MARK SCHEME

SECTION A

Q.1 (a) (i) $CH_3CH_2CH_2CH_3 + Cl_2 \rightarrow CH_3CH_2CH_2CH_2CH_2Cl_+ HCl_-$ [1]

(ii) $CH_3CH_2CH_2\overset{\bullet}{C}HCH_3$ [1]

(b) (Anhydrous) aluminium chloride / iron(III) chloride allow AlCl₃ / FeCl₃ [1]

(c) (i) orange / red precipitate [1]

(ii) CH₃ (1) —COCH₃ groups in any positions

It must contain a C=O group but it is not an aldehyde as it does not react with Tollens' reagent (1) [2]

- (d) (i) (Alkaline) potassium manganate(VII) (solution) allow KMnO₄ / MnO₄ [1]
 - (ii) Dilute acid allow HCl / H⁺
 - (iii) Lithium tetrahydridoaluminate(III) / lithium aluminium hydride allow LiAlH₄ [1]

(iv) CH_2Br [1]

(e) Only the infrared spectrum of benzoic acid would have a peak at 1650–1750 cm⁻¹ (1) This is due to the carbonyl group present in the benzoic acid (1) [2]

Total [12]

Q.2 (a)

[1]

- (b) (i) Acidified potassium dichromate allow H⁺, Cr₂O₇²⁻ [1]
 - (ii) I An equimolar mixture of two enantiomers / optical isomers
 do not accept 'equal mixture' [1]
 - II It has no (apparent) effect on the plane of polarised light [1]
- (c) (i) But-2-enoic acid; this is because each of the carbon atoms of the double bond has two different groups / atoms

 allow reason based on the other isomer [1]
 - (ii) Any TWO from the following for (1) each reagent used / temperature / quantities / time of reaction / catalyst / solvent [2]
- (d) Reagent(s) KOH / I₂ or NaOC1 / KI (1) allow names
 Observation Yellow precipitate (1) [2]
- (e) The NMR spectrum will consist of two peaks, as there are two discrete 'areas' of protons; these will be seen at between 2.0 to 2.5 (CH₃) and between 2.5 to 3.0 (CH₂) (1) The peak area ratio will be 3:2 for the CH₃ and CH₂ protons respectively (1) There will be no splitting of either signal as the protons causing these signals are not bonded directly to other carbon atoms that also have protons (1)

1 max if only one peak described correctly [3]

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. [1]

Total [13]

Q.3 (a) (i) 2 mol of ethanol gives 1 mol of ethoxyethane (1)

Moles of ethanol = $\frac{69}{46}$ = 1.5

- \therefore Moles of ethoxyethane if theoretical yield = 0.75
- \therefore Moles of ethoxyethane if 45% yield = $0.75 \times 0.45 = 0.34$ (1)

Mass of ethoxyethane = $0.34 \times 74 = 25g$ (1) allow error carried forward

[3]

[1]

(ii) Ethene / C₂H₄

(iii) H H H - C - C - Br \rightarrow products $H H + C - CH_2 - CH_3$

- (1) for correct curly arrows (1) for correct δ^+ and δ^- [2]
- (iv) They need to have an N–H / O–H / F–H bond / a highly electronegative atom bonded to hydrogen [1]
- (b) (i) For example

Accept any polybrominated species

Do not accept a monobrominated species

- (ii) Bromine decolorised / orange to colourless / white solid [1]
- (c) Reagent Iron(III) chloride solution / FeCl₃ (1)

 Observation Purple coloration / solution (1) [2]
- (d) (i) $C_{10}H_{12}O_1$ [1]

(ii)
$$H H H CH_3 - C - C - C OH CH_3 - C - C OH CH_3 - C - C OH$$

$$H Br Br H CH_3 - C - C - C OH$$

$$[1]$$

(e) Displayed formula, for example

HOOC —
$$CH_2-CH_2-CH_3$$
 (1)

Functional group carboxylic acid (1) [2]

Total [15]

© WJEC CBAC Ltd.

SECTION B

- Q.4 (a) (i) (Fractional) distillation / (preparative) gas chromatography / HPLC / TLC column chromatography / solvent extraction [1]
 - (ii) the fragmentation pattern would be different / valid examples given [1]
 - (iii) I

$$CH_2NH_2 + CH_3C$$
 CI
 $CH_2NH_2 + CH_3C$
 CI
 $CH_2NH_2 + CH_3C$
 CH_3
 CH_3
 CH_3
 CH_3

II Heated electrically / by a naked flame with a water bath (1)
 Add compound G to the ethanol until the hot ethanol will (just) not dissolve any more solute (1)

Filter hot (1)

Allow to cool (1)

Filter (1)

Dry in air / window sill / < 60 °C in an oven (1)

[5]

[1]

Maximum 4 out of 5 total if second marking point not given Note 5 marks maximum here

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate

(iv) I The amine is reacted with sodium nitrite / HCl(aq) or nitrous acid (1) at a temperature of < 10 °C (1) [2]

II

$$N = N - CH^3$$

(b) (i) Nucleophilic addition (1)

Accept a mechanism that shows HCN polarisation and nucleophilic addition as a concerted process

polarisation / charges shown (1) curly arrows on first structure (1) regeneration of ${}^{-}C \equiv N$ or capture of ${}^{+}$ and curly arrow (1) [4]

(ii) Chromophores (1)
The colour will be black (1) as the compound absorbs blue / other colours (1)

[3]

Total [20]

Q.5 (a) C 71.3 H 9.6
$$\therefore$$
 O 19.1 (1)
÷ by A_r $\frac{71.3}{12} = 5.94$ $\frac{9.6}{1.0} = 9.6$ $\frac{19.1}{16} = 1.193$
÷ smallest $\frac{5.94}{1.193} = 5$ $\frac{9.6}{1.193} = 8$ $\frac{1.193}{1.193} = 1$ (1)

Only one oxygen atom per molecule

 \therefore Molecular formula is C_5H_8O (1)

Silver mirror produced
$$\therefore -C$$
 present (1)

Ion m/z 29 suggests ethyl group present / CH_3CH_2 (1)

Structure must be

[6]

(b) (i)
$$C_{11}H_{24} \longrightarrow C_6H_{14} + C_2H_4 + C_3H_6$$
 [1]

(ii) Total peak areas 26 + 13 + 46 = 85

% propene =
$$\frac{13 \times 100}{85}$$
 = 15.(3) [1]

(iii) Any THREE points for (1) each [3]

e.g. can it run at a lower temperature (reducing energy costs) is the yield comparable / better than the yield from the propene process is the time taken comparable / better than used in the propene process is there a continued availability of starting materials can the product be easily / better separated from the reaction mixture is relatively more expensive equipment needed is it a batch or continuous process

(iv)
$$CH_2 - CH_2 - CH_2$$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$

[1]

(c) (i)
$$O = C + O =$$

- (ii) The production of PTT is an example of condensation polymerisation (1)
 The production of poly(propene) is an example of addition polymerisation (1)
 Condensation polymerisation needs bifunctional compounds / COOH,OH etc (1)
 - Addition polymerisation needs a C=C present in the monomer (1)
 - Addition polymerisation has an atom economy of 100% (1)

 Condensation polymerisation has an atom economy of < 100% (as a co-product is formed) (1) [6]
 - QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

Total [20]