



# **Chemistry A**

Advanced Subsidiary GCE

Unit F321: Atoms, Bonds and Groups

## Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

| Quest | ion   | Answer                                                                                                                                     |                                 |                              |                                             | Mark                                                              | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (a) |       | particle<br>proton<br>neutron<br>electrons                                                                                                 | rel charge<br>+1<br>nil/0<br>-1 | rel mass<br>1<br>1<br>1/2000 | position<br>nucleus<br>nucleus<br>in shells | 1                                                                 | <ul> <li>1 mark for whole table</li> <li>ALLOW '+' on its own for rel charge of proton</li> <li>DO NOT ALLOW '1' on its own for rel charge of proton</li> <li>DO NOT ALLOW 'positive' for rel charge of proton</li> <li>For neutron ALLOW 'neutral'</li> <li>ALLOW '' on its own for rel charge of electron</li> <li>DO NOT ALLOW 'negative' for rel charge of electron</li> <li>IGNORE '+' if precedes '1' for mass</li> <li>IGNORE 'middle/centre' for nucleus</li> </ul>                                                                                                                                       |
| (b)   |       | The energy required to remove an electron ✓<br>from each <b>atom</b> in <b>one mole</b> ✓<br>of <b>atoms</b> in the <b>gaseous</b> state ✓ |                                 |                              |                                             |                                                                   | ALLOW 'energy to remove one mole of electrons from one mole of gaseous<br>atoms' for three marks<br>ALLOW 'The energy required to remove an electron from one mole of<br>gaseous atoms to form one mole of gaseous 1+ ions' for two marks as it does<br>not meet the 2 <sup>nd</sup> marking point<br>For third mark:<br>ALLOW ECF of wrong particle being gaseous<br>If no attempt at a definition, ALLOW one mark for the equation below,<br>including state symbols<br>$X(g) \rightarrow X^{+}(g) + e^{-}$ OR $X(g) - e^{-} \rightarrow X^{+}(g)$<br>ALLOW e for electrons<br>IGNORE state symbol for electron |
| (c)   |       | a 2p orbital $2\checkmark$ the 3s sub-shell $2\checkmark$ the 4th shell $32\checkmark$                                                     |                                 | 1<br>1<br>1                  |                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (d)   |       | A repeating pattern (of properties shown across different periods) ✓                                                                       |                                 | different                    | 1                                           | ALLOW 'repeating trend'<br>DO NOT ALLOW just 'trend' OR 'pattern' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (e)   | (i)   |                                                                                                                                            |                                 |                              | 1                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (ii)  | AI✓                                                                                                                                        |                                 |                              |                                             | 1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (iii) | N✓                                                                                                                                         |                                 |                              |                                             | 1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |       | AI✓                                                                                                                                        |                                 |                              |                                             | 1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (v)   | Mg ✓                                                                                                                                       |                                 |                              |                                             | 1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |       |                                                                                                                                            |                                 |                              | Total                                       | 13                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|   | Quest | tion                                           | Answer                                                                                                                                                                                                | Mark   | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---|-------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2 | (a)   | (a) $MgCO_3 \rightarrow MgO + CO_2 \checkmark$ |                                                                                                                                                                                                       | 1      | IGNORE state symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   | (b)   | (i)                                            | MgCO <sub>3</sub> (s) + 2HCl(aq) → MgCl <sub>2</sub> (aq) + H <sub>2</sub> O(l) +<br>CO <sub>2</sub> (g)<br>Correct balanced equation $\checkmark$<br>Correct states for correct species $\checkmark$ | 1<br>1 | ALLOW states mark if MgCl used in place of MgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|   |       | (ii)                                           | Similarity:<br>(Both) dissolve <b>OR</b> disappear. ✓                                                                                                                                                 | 1      | ALLOW (both) 'go clear'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|   |       |                                                | Difference:<br>One effervesces <b>OR</b> fizzes <b>OR</b> bubbles <b>OR</b> gas<br>produced ✓                                                                                                         | 1      | ALLOW CO <sub>2</sub> produced<br>DO NOT ALLOW incorrect gases<br>DO NOT ALLOW responses which suggest <b>A</b> will effervesce e.g. as <b>B</b> will fizz more                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|   |       | (iii)                                          | 203.3                                                                                                                                                                                                 | 1      | DO NOT ALLOW 203 or 203.0<br>IGNORE units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|   |       | (iv)                                           | $\begin{bmatrix} Mg \end{bmatrix}^{2+} \begin{bmatrix} CI \\ CI \end{bmatrix}^{-}$                                                                                                                    |        | <ul> <li>For 1st mark, if 8 electrons shown around cation then<br/>'extra' electron around anion must match symbol<br/>chosen for electrons in cation<br/>Shell circles not required</li> <li>IGNORE inner shell electrons</li> <li>ALLOW correct diagram of a [Cl<sup>-</sup>] ion with '2 x' OR '2' in front OR 'x 2' after the<br/>diagram.</li> <li>ALLOW correct diagram of [Cl<sup>-</sup>] ion with subscript 2. i.e. [Cl<sup>-</sup>]<sub>2</sub>.</li> <li>DO NOT ALLOW [Cl<sup>-</sup><sub>2</sub>] [Cl<sup>-</sup><sub>2</sub></li> </ul> |  |  |
|   |       |                                                | magnesium (ion) with 8 (or no) outermost<br>electrons <b>AND</b> 2 x chloride (ions) with ' <i>dot-and-</i><br><i>cross</i> ' outermost octet ✓<br>correct charges ✓                                  | 1      | i.e. for first mark charges do not need to be seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

|   | Ques | tion  | Answer                                                                                                                                       | Mark | Guidance                                                                                                                                                                                                                                                                                                                    |
|---|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (C)  |       | 1.82       1.05       2.40         24.3       28.1       16.0         To give       0.0749       0.0374       0.150         Ratio of moles ✓ | 1    | <ul> <li>ALLOW '24' for Mg (giving 0.0758) and '28' for Si (giving 0.0375)</li> <li>ALLOW any correct ratios of moles as calculator value OR correct rounding to 2 sig figs or more</li> <li>ALLOW method from masses being converted to percentages</li> </ul>                                                             |
|   |      |       | Answer = Mg₂SiO₄ ✓                                                                                                                           | 1    | ALLOW correct answer from a ratio of moles where it is clear that the candidate has divided by the atomic numbers.<br>ALLOW ECF for formula from incorrect ratio of moles due to over-rounding calculator error or upside down mole calculation                                                                             |
|   | (d)  | (i)   | $\frac{32.00}{1000} \times 0.500 = 1.60 \times 10^{-2} \text{ (mol)}$<br><b>OR</b> 0.0160 (mol) $\checkmark$                                 | 1    | ALLOW 0.016 (mol)<br>IGNORE trailing zeroes                                                                                                                                                                                                                                                                                 |
|   |      | (ii)  | $\frac{1.60 \times 10^{-2}}{2} = 8.00 \times 10^{-3} \text{ (mol)}$<br>OR 0.00800 (mol)                                                      | 1    | ALLOW ECF for answer $\frac{d(i)}{2}$<br>ALLOW 0.008 or 8 × 10 <sup>-3</sup> (mol) Ignore trailing zeroes<br>ALLOW 0.0080 or 8.0 × 10 <sup>-3</sup>                                                                                                                                                                         |
|   |      | (iii) | Molar mass Mg(OH) <sub>2</sub> = 58.3 $\checkmark$                                                                                           | 1    | DO NOT ALLOW 58 OR 58.0                                                                                                                                                                                                                                                                                                     |
|   |      |       | mass Mg(OH) <sub>2</sub> = 58.3 × 8.00 × $10^{-3}$ = 0.466(4) g                                                                              | 1    | ALLOW answer to d(ii) × 58.3<br>ALLOW 0.47<br>ALLOW ECF for d(ii) × incorrect molar mass as calculator value OR correct rounding to<br>2 sig figs or more                                                                                                                                                                   |
|   |      |       | % Mg(OH) <sub>2</sub> = $\frac{0.4664}{0.500} \times 100 = 93.3\% \checkmark$                                                                | 1    | ALLOW 93% OR 93.2% OR 93.28%<br>DO NOT ALLOW d(ii)/ $0.5 \times 100$<br>ALLOW (answer to second marking point/ $0.500$ ) × 100 as calculator value OR correct<br>rounding to 2 sig figs or more<br>ALLOW moles method for 3 marks<br>Molar mass = 58.3<br>0.500/58.3 = =0.00857(6)<br>$0.00800/0857(6) \times 100 = 93.3\%$ |
|   |      |       | Total                                                                                                                                        | 15   | ALLOW correct answer without working for 3 marks                                                                                                                                                                                                                                                                            |

F321

## Mark Scheme

| C | Questi | ion  | Answer                                                                                                                                                                                                                                                                                   |   | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)    |      | 2NaOH + Cl <sub>2</sub> → NaClO + NaCl + H <sub>2</sub> O $\checkmark$                                                                                                                                                                                                                   | 1 | ALLOW NaOCI<br>IGNORE state symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | (b)    | (i)  | Sodium chlorate(V) ✓                                                                                                                                                                                                                                                                     | 1 | ALLOW sodium chlorate V<br>DO NOT ALLOW sodium chlorate 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |        | (ii) |                                                                                                                                                                                                                                                                                          |   | USE annotations with ticks, crosses, con, ECF, etc for this part.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |        |      | Cl in NaClO <sub>3</sub> is (+)5<br><b>AND</b> Cl in NaClO <sub>4</sub> is (+)7<br><b>AND</b> Cl in NaCl is $-1 \checkmark$                                                                                                                                                              | 1 | ALLOW 5+, 7+ 1– Look for oxidation numbers seen above equation.<br>DO NOT ALLOW CI <sup>-</sup> in NaCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |        |      | Chlorine has been both oxidised and reduced <b>OR</b><br>The oxidation number of chlorine has increased <b>AND</b> decreased ✓                                                                                                                                                           | 1 | The second and third marking points must refer to chlorine<br>ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given<br>ALLOW CI for 'chlorine'<br>DO NOT ALLOW CI <sub>2</sub> for 'chlorine'                                                                                                                                                                                                                                                                                                                                                                                 |
|   |        |      | Chlorine has been oxidised from (+)5 to (+)7 <b>AND</b><br>chlorine has been reduced from (+)5 to $-1 \checkmark$<br>(These points would secure marking points 2 and 3)<br>4NaClO <sub>3</sub> $\rightarrow$ 3NaClO <sub>4</sub> + NaCl<br>+5 $+7$ $-1$ This diagram gets all<br>3 marks | 1 | <ul> <li>ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine</li> <li>IGNORE references to electron loss / gain if correct.</li> <li>DO NOT ALLOW 3rd mark for reference to electron loss/gain</li> <li>If oxidation numbers are correct,</li> <li>ALLOW 1 mark for 'chlorine is oxidised to form NaClO<sub>4</sub>'</li> <li>ALLOW 1 mark for 'chlorine is reduced to form NaCl'</li> <li>ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned</li> </ul> |
|   | (c)    | (i)  | Chlorinated hydrocarbons are carcinogens <b>OR</b> toxic <b>OR</b> Chlorine is toxic <b>OR</b> poisonous ✓                                                                                                                                                                               | 1 | ALLOW CH <sub>3</sub> Cl for 'chlorinated hydrocarbons'         IGNORE 'harmful'         IGNORE 'carcinogenic' for chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |        |      | (Chlorine) kills bacteria <b>OR</b> 'kills germs'<br>'kills micro-organisms' <b>OR</b> 'makes water safe to drink'<br><b>OR</b> 'sterilises water' <b>OR</b> 'disinfects' ✓                                                                                                              | 1 | DO NOT ALLOW 'antiseptic'<br>ALLOW 'to make water potable'<br>ALLOW 'removes' for 'kills'<br>IGNORE 'virus'<br>IGNORE 'purifies water'<br>IGNORE 'cleans water'                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   | Ques | tion  | Answer                                                                                                                                             | Mark | Guidance                                                                                                                                                                                                                                                              |
|---|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (c)  | (ii)  | Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of $CH_3CI$ <b>AND</b> lone pairs correct on $CI \checkmark$ | 1    | Must be ' <i>dot-and cross'</i><br>ALLOW different symbol for third 'type' of electron<br>Circles for outer shells not needed<br>IGNORE inner shells<br>Non-bonding electrons of chlorine do not need to be shown as pairs                                            |
|   |      | (iii) | Tetrahedral <b>OR</b> tetrahedron ✓                                                                                                                | 1    |                                                                                                                                                                                                                                                                       |
|   | (d)  |       | Add AgNO <sub>3</sub> (aq) <b>OR</b> Ag <sup>+</sup> (aq) <b>OR</b> silver nitrate <b>OR</b><br>AgNO <sub>3</sub> ✓                                | 1    | ALLOW Ag <sup>+</sup> (aq) seen in the ionic equation<br>IGNORE references to nitric acid<br>IGNORE references to adding water or dissolving the brine<br>DO NOT ALLOW references to any other additional reagent as well as the silver<br>nitrate for the first mark |
|   |      |       | White precipitate ✓                                                                                                                                | 1    | White <b>AND</b> precipitate required<br><b>DO NOT ALLOW</b> hint of any other colour<br><b>IGNORE</b> 'turns grey'<br><b>ALLOW</b> solid as alternative for precipitate                                                                                              |
|   |      |       | $Ag^+ + CI^- \rightarrow AgCI \checkmark$                                                                                                          | 1    | IGNORE states                                                                                                                                                                                                                                                         |
|   |      |       | Add dilute NH <sub>3</sub> and precipitate (completely) dissolves <b>OR</b> disappears $\checkmark$                                                | 1    | DO NOT ALLOW conc. NH <sub>3</sub><br>DO NOT ALLOW any mention of incomplete dissolving<br>ALLOW (for 4th mark) 'add Cl <sub>2</sub> (aq)' AND 'no colouration would be seen' OR 'no<br>change' OR 'no reaction'                                                      |
|   |      |       | Total                                                                                                                                              | 13   |                                                                                                                                                                                                                                                                       |

| Ques  | tion | Answer                                                                                                                                                                                                                                              |   | Guidance                                                                                                                                                                                                                                                                                     |
|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 (a) | (i)  | The hydrogen <b>ions OR</b> H <sup>+</sup> <b>OR</b> protons (of hydrochloric acid) are replaced by zinc <b>ions OR</b> Zn <sup>2+</sup> ✓                                                                                                          | 1 | <ul> <li>ALLOW Zn ions OR positive ions replace H ions OR a metal ion has replaced a hydrogen ion OR protons</li> <li>DO NOT ALLOW Zn replaces H. Ions are key either in word form or symbol form</li> <li>DO NOT ALLOW Zn<sup>+</sup> i.e. if charge is shown it must be correct</li> </ul> |
|       | (ii) | Zn <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> ✓                                                                                                                                                                                                   | 1 | ALLOW ZnHPO <sub>4</sub> OR Zn(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub><br>ALLOW Zn <sub>3</sub> P <sub>2</sub> O <sub>8</sub>                                                                                                                                                          |
| (b)   |      | reactivity increases (down the group) $\checkmark$                                                                                                                                                                                                  | 1 | USE annotations with ticks, crosses, con, ECF, etc for this part.<br>'down the group' not required<br>ALLOW alternative phrases for 'reactivity increases'                                                                                                                                   |
|       |      | atomic radii increases <b>OR</b> there are more shells ✓                                                                                                                                                                                            | 1 | ALLOW 'there are more energy levels'<br>ALLOW 'electrons are in a higher energy level'<br>ALLOW 'the electrons are further from nucleus'<br>IGNORE there are more orbitals OR more sub-shells<br>IGNORE 'different shell' or 'new shell'                                                     |
|       |      | <i>Increased shielding mark</i><br>there is <b>more</b> shielding ✓                                                                                                                                                                                 | 1 | ALLOW 'more screening'<br>There must be a clear comparison i.e. 'more shielding' OR 'increased<br>shielding'.<br>i.e. DO NOT ALLOW 'there is shielding'<br>ALLOW 'there is more electron repulsion from inner shells' 'more' is<br>essential                                                 |
|       |      | <ul> <li>Nuclear attraction mark</li> <li>The nuclear attraction decreases</li> <li>OR (outermost) electrons experience less attraction (to nucleus)</li> <li>OR Increased shielding / distance outweighs the increased nuclear charge ✓</li> </ul> | 1 | ALLOW 'there is less nuclear pull' <b>OR</b> 'electrons less tightly held'<br><b>IGNORE</b> 'there is less effective nuclear charge'<br><b>IGNORE</b> 'nuclear charge' for 'nuclear attraction'                                                                                              |
|       |      | easier to remove (outer) electrons<br>OR ionisation energy decreases ✓<br>ORA throughout                                                                                                                                                            | 1 | ALLOW 'easier to oxidise'<br><b>Quality of Written Communication</b> – 'electron(s)' <b>OR</b> 'ionisation' <b>OR</b><br>'ionization' <b>OR</b> 'oxidise' <b>OR</b> oxidize' spelled correctly at least once for 5 <sup>th</sup><br>marking point                                            |
|       |      | Total                                                                                                                                                                                                                                               | 7 |                                                                                                                                                                                                                                                                                              |

| Q | uest | ion  | Answer                                                                                                                                                                                                                                                                  |   | Guidance                                                                                                                                                                                                                                                                                                                                                                |
|---|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)  |      | Metallic lattice has delocalised <b>OR</b> mobile electrons<br><b>OR</b> metallic bonding has delocalised <b>OR</b> mobile electrons ✓<br>lonic lattice has no mobile ions<br><b>OR</b> ionic solid has no mobile ions ✓<br>molten ionic (compounds) have mobile ions ✓ | 1 | IGNORE 'free electrons' for 'mobile electrons'<br>DO NOT ALLOW references to incorrect bonding<br>ALLOW 'ions are fixed in place'<br>IGNORE 'no mobile electrons' for solid ionic<br>IGNORE 'no mobile charge carriers' for solid ionic<br>IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions'                                                                   |
|   | (b)  | (i)  | Two (or more) ammonia molecules with at least one H $\delta$ + and at least one N $\delta$ - (can be on the same or different molecules) $\checkmark$                                                                                                                   | 1 | DO NOT ALLOW any mention of electrons movingIGNORE 'aqueous ionic compounds have mobile ions'There must be 3H atoms bonded to one N atomDO NOT ALLOW any Hδ- OR Nδ+ALLOW 2-D NH3 moleculesIGNORE lone pair(s) for first marking point                                                                                                                                   |
|   |      |      | H-bond between H in one ammonia and lone pair of N in another<br>ammonia molecule $\checkmark$<br>hydrogen bond<br>H $\downarrow \delta_{-}$ $\downarrow \delta_{+}$ $\downarrow$<br>H $-$ N $\bullet$ $-$ H $-$ N $\bullet$<br>H $\downarrow$ H                        | 1 | All H-bonds drawn must hit the lone pair<br>H-bond does not need to be labelled but must be different from covalent<br>bond<br><b>DO NOT ALLOW</b> more than one lone pair on N for second marking point<br><b>ALLOW</b> a pair of molecules with two 'correct' hydrogen bonds forming a<br>'dimer'                                                                     |
|   |      | (ii) | Ice has stronger hydrogen bonds ✓                                                                                                                                                                                                                                       | 1 | <ul> <li>ALLOW 'more' for 'stronger' OR Ice has twice as many hydrogen bonds as ammonia</li> <li>ALLOW ice has stronger intermolecular forces than ammonia OR bigger permanent dipole than ammonia</li> <li>DO NOT ALLOW comparisons between different types of force</li> <li>DO NOT ALLOW reference to van der Waals'</li> <li>IGNORE 'more energy needed'</li> </ul> |
|   |      |      | O has two lone pairs ( <b>AND</b> N has one)<br>OR<br>O more electronegative (than N) ✓                                                                                                                                                                                 | 1 | ALLOW O has more lone pairs                                                                                                                                                                                                                                                                                                                                             |

F321

Mark Scheme

| Q | uesti | on | Answer                                                                                                                                                                                                                                 | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (c)   |    | SiO₂ is <b>giant covalent</b> (lattice)✓                                                                                                                                                                                               | 1    | USE annotations with ticks, crosses, con, ECF, etc for this part.<br>ALLOW macromolecular OR giant atomic<br>ALLOW SiO <sub>2</sub> is a 'giant structure with covalent bonds'<br>ALLOW even if reference to 'covalent' only appears later in answer.<br>DO NOT ALLOW any reference to 'ionic' OR 'intermolecular' OR 'metallic'<br>Quality of Written Communication - Covalent OR macromolecular OR<br>atomic spelt correctly ONCE and used in context of the first marking point |
|   |       |    | SiCl₄ is <b>simple molecular</b> (lattice) ✓                                                                                                                                                                                           | 1    | ALLOW simple covalent<br>DO NOT ALLOW any reference to 'giant' OR 'ionic' OR 'metallic'<br>If neither of the 1st 2 marks have been awarded,<br>ALLOW 1 mark for SiO <sub>2</sub> is giant AND SiCl <sub>4</sub> is simple OR molecular                                                                                                                                                                                                                                             |
|   |       |    | van der Waals' forces in SiCl₄ ✓                                                                                                                                                                                                       | 1    | ALLOW induced dipoles<br>DO NOT ALLOW permanent dipoles                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       |    | <b>Covalent bonds</b> broken in SiO <sub>2</sub> $\checkmark$                                                                                                                                                                          | 1    | ALLOW alternative words to broken e.g. overcome                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       |    | Forces <b>OR</b> bonds are stronger in SiO <sub>2</sub> (than in SiCl <sub>4</sub> )<br><b>OR</b> more energy is needed to break forces <b>OR</b> bonds in SiO <sub>2</sub><br>(than in SiCl <sub>4</sub> ) $\checkmark$<br><b>ORA</b> | 1    | ALLOW incorrect forces in SiCl <sub>4</sub> OR SiO <sub>2</sub> for this mark                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |       |    | Total                                                                                                                                                                                                                                  | 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

