
CH4

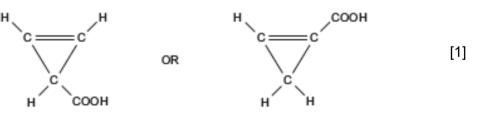
SECTION A

Total [12]

(a)

[1]

[1]


2.

(i) Sodium / potassium cyanide

(iii) Sulfuric / hydrochloric acid [1]

(v) eg

- (vi) [1] LiAlH₄ / H₂ / sodium, ethanol (vii) The nitrogen atoms act as electron pair donors / proton acceptors [1] (b) Molecular formula is C₄H₄O₂ (i) [1] (ii) 3 [1] C = C / alkene(iii) [1] Two of the (remaining) protons are in equivalent environments (and one is (iv) not) / there are CH and CH_2 present [1]
 - (v) Possibilities

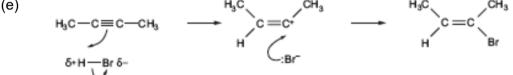
Total [12]

[3]

3. (a)

$$\begin{array}{cccc}
H & H & H \\
| & | & | \\
H - C - C - C = C - C - H \\
| & | & | \\
H & H & H
\end{array}$$
[1]


(b) Moles of calcium carbide = 500/64.1 = 7.80 (1)


Moles of ethyne = 7.80

Volume of ethyne = $7.80 \times 24.0 = 187 (dm^3)$ (1) [2]

(c) If the process is endothermic left to right then it needs to absorb energy

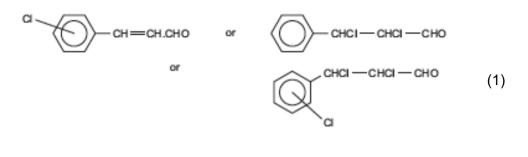
 hence the high temperature / endothermic reactions need a high temperature [1]

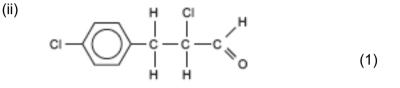
Curly arrows (1), full (1) and partial charges (1)

(f) Any two for (1) each
 energy costs / cost of catalyst / problems of separation of products /
 time taken / availability of starting materials / percentage yield /
 atom economy / relative health and safety [2]

(g)
$$C_6H_5 - C \equiv C - CH_2 - CH_3$$
 (1) C_1H_1 (1) [2]

(h) (i)


(ii) I sulfuric acid /
$$H_2SO_4$$
 / phosphoric acid / H_3PO_4 / AI_2O_3 [1]


II 3-hydroxypropanoic acid does not show a C = C absorption at **1620–1670** cm⁻¹ but this is present in propenoic acid [1]

III The
$$CH_3 - C$$
 / $CH_3CH(OH)$ group is absent [1]

Total [16]

4. (a) (i) Substitution may occur in the ring at a different position (1) Addition may occur across the double bond (1)

In both additions a secondary carbocation is formed therefore 'equal chances' / the energy for the formation of the carbocation is similar in both cases (1)

the energy for the formation of the carbocation is similar in both cases (1)

[2]

[1]

[3]

- (iii) 'acidified dichromate' / H^{+} and $Cr_2O_7^{2-}$
- (iv) Although it contains a chiral centre (1) an equimolar / racemic mixture has been produced in the reaction (1) rotation is (externally) compensated (1)

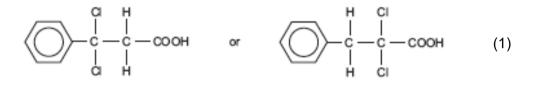
Any 2 from 3

[2]

- QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]
- LiAIH₄ / lithium tetrahydridoaluminate(III) / lithium aluminium hydride (1) Do not accept NaBH₄

$$CI \longrightarrow \begin{pmatrix} CI & H \\ I & I \\ -C & -C & -C \\ H & H \end{pmatrix} = \begin{pmatrix} H \\ -H \\ OH \end{pmatrix}$$
(1)

[2]


群尧咨询

- (b) (i) Gas bubbles / effervescence (1) Identifies carboxylic acid group (1) [2]
 - (ii) The bond between the ring and the chlorine atom is stronger than the aliphatic C–Cl bond or vice versa (1)
 This is due to interaction between a **lone pair** of electrons on the chlorine atom and the ring electrons (1)
- (c) Compound 1 cannot give the m/z fragment value 77 $(C_6H_5^+)$ (1)

Compound 2 has a chiral centre (1)

Compound 3 is rapidly hydrolysed by water / has a chiral centre (1)

Possible correct answers

[4]

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning [1]

Total [20]

5.	(a)	Number of moles of nitrogen = $1.00/23.2 = 0.0431$ (1) thus number of moles of the amine is also 0.0431		
		M_r of the amine = mass / number of moles = 2.54 / 0.0431 = 58.9 (1)		
		/	$R - NH_2 \longrightarrow 58.9$	
		16.02	\therefore R = '43' \therefore Formula is CH ₃ CH ₂ CH ₂ NH ₂ or (CH ₃) ₂ CHNH ₂ (1)	[3]
	(b)	(i)	An electron deficient species that seeks out an electron rich / negatively charged / $\delta\mathchar$ site in a molecule	[1]
		(ii)	3-methylphenylamine	[1]
		(iii)	These types of group are called chromophores <i>/</i> azo (1) and are responsible for the production of colour in compounds as found in azo-dyes (1)	[2]
	(c)	(i)	Nucleophilic addition and elimination / condensation (1) The products are orange/ red/ yellow (1)	[2]
		(ii)	R_f values $2.5/7.2 = 0.35$ and $3.5/7.2 = 0.49$ (1) Ketones are propanone and pentan-2-one (1)	
			Alkene W is $CH_3 - C = C - CH_2 - CH_2 - CH_3$ $\begin{vmatrix} & \\ & \\ & CH_3 & CH_3 \end{vmatrix}$ (1)	
			The name is 2,3-dimethylhex-2-ene (1)	[4]
			QWC Information organised clearly and coherently, using specialist vocabulary where appropriate	[1]
		(iii)	The equation / information shows that R and R^1 are different alkyl groups 2-methyl-3-ethylpent-2-ene has both R and R^1 as ethyl groups	[1]
	(d)	(i)	$CH_3COOH \ \ \textbf{+} \ \ CH_3CH_2OH \ \ \rightarrow \ \ CH_3COOCH_2CH_3 \ \ \textbf{+} \ \ H_2O$	[1]
		(ii)	Mass of ethanoic acid = $0.45 \times 60 = 27 \text{g}$	[1]
		(iii)	There is no indication of the time necessary to reflux the mixture / method of heating / mention of dangers from fire	[1]
		(iv)	It acts as a catalyst / dehydrating agent / necessary to remove water / move the position of equilibrium to the right	[1]
		(v)	To react with (any remaining) ethanoic acid	[1]

Total [20]