

General Certificate of Education Advanced Level Examination June 2013

Mathematics

MPC4

Unit Pure Core 4

Monday 10 June 2013 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

更多咨询请登录

2

1 (a) (i) Express
$$\frac{5-8x}{(2+x)(1-3x)}$$
 in the form $\frac{A}{2+x} + \frac{B}{1-3x}$, where A and B are integers. (3 marks)

(ii) Hence show that
$$\int_{-1}^{0} \frac{5-8x}{(2+x)(1-3x)} \, dx = p \ln 2$$
, where p is rational. (4 marks)

(b) (i) Given that
$$\frac{9 - 18x - 6x^2}{2 - 5x - 3x^2}$$
 can be written as $C + \frac{5 - 8x}{2 - 5x - 3x^2}$, find the value of C. (1 mark)

(ii) Hence find the exact value of the area of the region bounded by the curve $y = \frac{9 - 18x - 6x^2}{2 - 5x - 3x^2}$, the x-axis and the lines x = -1 and x = 0.

You may assume that y > 0 when $-1 \le x \le 0$. (2 marks)

2 The acute angles
$$\alpha$$
 and β are given by $\tan \alpha = \frac{2}{\sqrt{5}}$ and $\tan \beta = \frac{1}{2}$.

- (a) (i) Show that $\sin \alpha = \frac{2}{3}$, and find the exact value of $\cos \alpha$. (2 marks)
 - (ii) Hence find the exact value of $\sin 2\alpha$. (2 marks)
- (b) Show that the exact value of $\cos(\alpha \beta)$ can be expressed as $\frac{2}{15}(k + \sqrt{5})$, where k is an integer. (4 marks)

3 (a) Find the binomial expansion of $(1 + 6x)^{-\frac{1}{3}}$ up to and including the term in x^2 . (2 marks)

- (b) (i) Find the binomial expansion of $(27 + 6x)^{-\frac{1}{3}}$ up to and including the term in x^2 , simplifying the coefficients. (3 marks)
 - (ii) Given that $\sqrt[3]{\frac{2}{7}} = \frac{2}{\sqrt[3]{28}}$, use your binomial expansion from part (b)(i) to obtain an approximation to $\sqrt[3]{\frac{2}{7}}$, giving your answer to six decimal places. (2 marks)

3

4	A curve is defined by the parametric equations $x = 8e^{-2t} - 4$, $y = 2e^{2t} + 4$.	
(a)	Find $\frac{dy}{dx}$ in terms of <i>t</i> .	(3 marks)
(b)	The point P, where $t = \ln 2$, lies on the curve.	
(i	i) Find the gradient of the curve at <i>P</i> .	(1 mark)
(i	ii) Find the coordinates of <i>P</i> .	(2 marks)
(i	iii) The normal at P crosses the x-axis at the point Q . Find the coordin	nates of <i>Q</i> . (3 marks)
(c)	Find the Cartesian equation of the curve in the form $xy + 4y - 4x = k$, where k is an integer. (3 marks)	

- 5 The polynomial f(x) is defined by $f(x) = 4x^3 11x 3$.
 - (a) Use the Factor Theorem to show that (2x+3) is a factor of f(x). (2 marks)
 - (b) Write f(x) in the form $(2x+3)(ax^2+bx+c)$, where a, b and c are integers. (2 marks)
 - (c) (i) Show that the equation $2\cos 2\theta \sin \theta + 9\sin \theta + 3 = 0$ can be written as $4x^3 11x 3 = 0$, where $x = \sin \theta$. (3 marks)
 - (ii) Hence find all solutions of the equation $2\cos 2\theta \sin \theta + 9\sin \theta + 3 = 0$ in the interval $0^{\circ} < \theta < 360^{\circ}$, giving your solutions to the nearest degree. (4 marks)

Turn over ►

(2 marks)

4

6 The points A, B and C have coordinates (3, -2, 4), (1, -5, 6) and (-4, 5, -1) respectively.

The line *l* passes through *A* and has equation $\mathbf{r} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 7 \\ -7 \\ 5 \end{bmatrix}$.

- (b) Find a vector equation of the line that passes through points A and B. (3 marks)
- (c) The point *D* lies on the line through *A* and *B* such that the angle *CDA* is a right angle.Find the coordinates of *D*. (5 marks)
- (d) The point E lies on the line through A and B such that the area of triangle ACE is three times the area of triangle ACD.

Find the coordinates of the two possible positions of E. (4 marks)

7 The height of the tide in a certain harbour is h metres at time t hours. Successive high tides occur every 12 hours.

The **rate of change** of the height of the tide can be modelled by a function of the form $a\cos(kt)$, where a and k are constants. The largest value of this rate of change is 1.3 metres per hour.

Write down a differential equation in the variables h and t. State the values of the constants a and k. (3 marks)

8 (a) Find
$$\int t \cos\left(\frac{\pi}{4}t\right) dt$$
. (4 marks)

(b) The platform of a theme park ride oscillates vertically. For the first 75 seconds of the ride,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t\cos\left(\frac{\pi}{4}t\right)}{32x}$$

where x metres is the height of the platform above the ground after time t seconds.

At t = 0, the height of the platform above the ground is 4 metres.

Find the height of the platform after 45 seconds, giving your answer to the nearest centimetre. (6 marks)

Copyright \circledcirc 2013 AQA and its licensors. All rights reserved.

