4721 Core Mathematics 1

5 （i）	$\frac{d y}{d x}=-50 x^{-6}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	$k x^{-6}$ Fully correct answer
（ii）	$y=x^{\frac{1}{4}}$	B1	$\sqrt[4]{x}=x^{\frac{1}{4}} \text { soi }$
	$\frac{d y}{d}=\frac{1}{4} x^{-\frac{3}{4}}$	B1	$\frac{1}{4} x^{c}$
	$d x$	B1	$k x^{-\frac{3}{4}}$
（iii）	$y=\left(x^{2}+3 x\right)(1-5 x)$	M1	Attempt to multiply out fully
	$=3 x-14 x^{2}-5 x^{3}$	A1	Correct expression（may have 4 terms）
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3-28 x-15 x^{2}$	M1 A1 4	Two terms correctly differentiated from their expanded expression Completely correct（3 terms）
		9	
6（i）	$5\left(x^{2}+4 x\right)-8$	B1	$p=5$
	$=5\left[(x+2)^{2}-4\right]-8$	B1	$(x+2)^{2}$ seen or $q=2$
	$=5(x+2)^{2}-20-8$	M1	$-8-5 q^{2}$ or $-\frac{8}{5}-q^{2}$
	$=5(x+2)^{2}-28$	A1 4	$r=-28$
（ii）	$x=-2$	B1 ft 1	
（iii）	$20^{2}-4 \times 5 \times-8$	M1	Uses $b^{2}-4 a c$
	$=560$	$\text { A1 } 2$	
（iv）	2 real roots	$\text { B1 } 1$	2 real roots
		8	
7（i）	$30+4 k-10=0$	M1	Attempt to substitute $\mathrm{x}=10$ into equation of line
	$\therefore k=-5$	A1 2	
（ii）			
	$\begin{aligned} & \sqrt{(10-2)^{2}+(-5-1)^{2}} \\ & =\sqrt{64+36} \end{aligned}$	M1	Correct method to find line length using Pythagoras’ theorem
	$=10$	A1 2	cao，dependent on correct value of k in（i）
（iii）	Centre（6，－2）	B1	
	Radius 5	$\text { B1 } 2$	
（iv）	Midpoint of $\mathrm{AB}=(6,-2)$		
	Length of $\mathrm{AB}=2 \mathrm{x}$ radius		One correct statement of verification
	Both A and B lie on circumference Centre lies on line $3 x+4 y-10=0$	8	Complete verification

10（i）	$\begin{aligned} \frac{d y}{d x} & =2 x+1 \\ & =5 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Attempt to differentiate y cao
（ii）	Gradient of normal $=-\frac{1}{5}$	B1 ft	ft from a non－zero numerical value in（i）
	When $x=2, y=6$	B1	May be embedded in equation of line
	$y-6=-\frac{1}{5}(x-2)$	M1	Equation of line，any non－zero gradient，their y coordinate
	$x+5 y-32=0$	A1 4	Correct equation in correct form
（iii）	$\begin{aligned} & x^{2}+x=k x-4 \\ & x^{2}+(1-k) x+4=0 \end{aligned}$	＊M1	Equating $y_{1}=y_{2}$
	One solution＝＞$b^{2}-4 a c=0$	DM1	Statement that discriminant $=0$
	$(1-k)^{2}-4 \times 1 \times 4=0$	DM1	Attempt（involving k ）to use $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from their equation
	$(1-k)^{2}=16$		Correct equation（may be unsimplified）
	$1-k= \pm 4$		Correct method to find k ，dep on $1^{\text {st }} 3 \mathrm{Ms}$
	$k=-3$ or 5	DM1	Both values correct
		A1 6	

