## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2013 series

## 9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

1 (a) (i)

S atom has 6 **and C** atom has 4 electrons (1)

S=C double bonds (4 electrons) clearly shown (1)

(ii) linear and  $180^{\circ}$  (1) [3]

(b) (i)  $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$  (1)

(ii) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air

or is completely combusted

under standard conditions (1) [3]

(c)

$$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$$
  
 $\Delta H_f \ominus / kJ \, \text{mol}^{-1} \, x - 395 \qquad 2(-298)$  (1)  
 $\Delta H_{\text{reaction}} = -395 + 2(-298) - x = -1110 \, kJ \, \text{mol}^{-1}$  (1)  
gives  $x = -395 + (-596) + 1110 = +119 \, kJ \, \text{mol}^{-1}$  (1) [3]

(d) (i)  $CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$ or  $CS_2 + 2NO \rightarrow CO + 2S + N_2O$ 

correct products (1)

correct equation (1)

(ii) from -2 to 0 both required (1) [3]

[Total: 12]

Mark Scheme

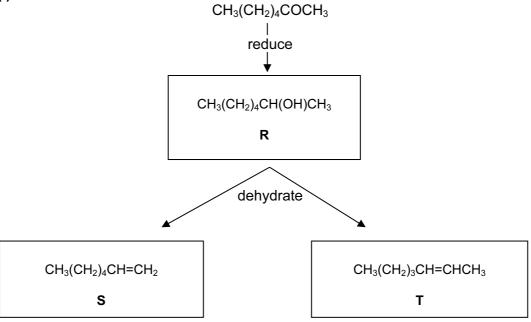
Page 3

Syllabus

Paper

|   |     |                         |                       |                             | GCE AS/A        | A LEV        | EL – May/     | June 2   | 2013          |      | 9701             | 23  |     |
|---|-----|-------------------------|-----------------------|-----------------------------|-----------------|--------------|---------------|----------|---------------|------|------------------|-----|-----|
| 2 | (a) | (i)                     | if the                | e conditi                   | ons of a sys    | stem i       | n equilibriu  | m are    | changed       |      |                  | (1) |     |
|   |     |                         | the p                 | oosition                    | of equilibriu   | ım mo        | oves so as f  | to redu  | ce that cha   | ange |                  | (1) | [2] |
|   |     | (ii)                    | lowe                  | er tempe                    | erature         |              |               |          |               |      |                  | (1) |     |
|   |     |                         | beca                  | ause the                    | forward re      | action       | is exother    | mic      |               |      |                  | (1) |     |
|   |     |                         | high                  | er press                    | sure            |              |               |          |               |      |                  | (1) |     |
|   |     |                         |                       | ause the                    | forward re      | action       | shows a re    | eductio  | n in volum    | е    |                  |     |     |
|   |     |                         | or<br>there           | e are fe                    | wer molecul     | les/m        | oles on RH    | S of ed  | quilibrium    |      |                  | (1) | [4] |
|   | (b) |                         |                       |                             | CO <sub>2</sub> | +            | $H_2$         | <b>=</b> | СО            | +    | H <sub>2</sub> O |     |     |
|   |     | initi                   | ial mo                | les                         | 0.70            |              | 0.70          |          | 0.30          |      | 0.30             |     |     |
|   |     | equ                     | uil. mo               | oles                        | (0.70-x)        |              | (0.70-x)      |          | (0.30+x)      |      | (0.30+x)         | (1) |     |
|   |     | equ                     | uil. co               | ncn.                        | (0.70–x)<br>1   |              | (0.70-x)<br>1 |          | (0.30+x)<br>1 |      | (0.30+x)<br>1    |     |     |
|   |     | <b>K</b> <sub>c</sub> : | = <u>(0.3</u><br>(0.7 | $\frac{(0+x)^2}{(0-x)^2} =$ | 1.44            |              |               |          |               |      |                  | (1) |     |
|   |     | at e                    | equilib               | : 0.25<br>orium,            | . 0. 70 . 0. 20 | <b>5</b> – 0 | 15 malaa      |          |               |      |                  | (1) |     |
|   |     | and                     |                       | · //(П2) -                  | 0.70 – 0.2      | J – U.       |               |          |               |      |                  |     |     |

 $n(CO) = n(H_2O) = 0.3 + 0.25 = 0.55 \text{ moles}$ 


[Total: 10]

(1) [4]

|   | Page 4  |             | Mark Scheme                                                             | Syllabus | Paper   | ·     |
|---|---------|-------------|-------------------------------------------------------------------------|----------|---------|-------|
|   |         |             | GCE AS/A LEVEL – May/June 2013                                          | 9701     | 23      |       |
| 3 | (a) (i) | He <b>c</b> | or Ne or Ar or Kr                                                       |          | (1)     |       |
|   | (ii)    | P or        | <sup>-</sup> As                                                         |          | (1)     |       |
|   | (iii)   | Br          |                                                                         |          | (1)     |       |
|   | (iv)    | Na          | allow Ar                                                                |          | (1)     |       |
|   | (v)     | Si          |                                                                         |          | (1)     |       |
|   | (vi)    | P all       | ow Si                                                                   |          | (1)     |       |
|   | (vii)   | Cl o        | <b>r</b> F <b>or</b> Br                                                 |          | (1)     | [7]   |
|   | (b) (i) | any         | <b>two</b> from $P_4O_6$ , $SO_2$ and $Cl_2O_7$                         |          | (1+1)   |       |
|   | (ii)    | Al₂C        | O <sub>3</sub> or SiO <sub>2</sub>                                      |          | (1)     |       |
|   | (iii)   | MgS         | $SO_3$                                                                  |          | (1)     | [4]   |
|   | (c) (i) | Si is       | giant molecular/giant covalent <b>or</b>                                |          |         |       |
|   |         | P, S        | , and C $\it l$ are simple molecular                                    |          | (1)     |       |
|   | (ii)    | the r       | molecules are S <sub>8</sub> , P <sub>4</sub> , C <i>l</i> <sub>2</sub> |          | (1)     |       |
|   |         | large       | er molecules have more electrons                                        |          | (1)     |       |
|   |         | and         | hence greater van der Waals' forces                                     |          | (1)     | [4]   |
|   |         |             |                                                                         |          | [Total: | : 15] |

| Page 5 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

4 (a) (i)



one mark for each correct compound, R, S and T

allow correct cis and trans versions of compound T for 2 marks  $(3 \times 1)$ 

## (ii) reduction

NaBH<sub>4</sub> or LiA
$$^{1}$$
H<sub>4</sub> or H<sub>2</sub>/Ni or Na/C<sub>2</sub>H<sub>5</sub>OH (1) dehydration

$$P_4O_{10}/P_2O_5$$
 or  $H_3PO_4$  or conc.  $H_2SO_4$  or  $Al_2O_3$  (1) [5]

(b)

| Tollens' reagent                                              | NO REACTION                                                                     |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| HCN                                                           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> C(OH)CH <sub>3</sub><br> <br>CN |  |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> /H <sup>+</sup> | NO REACTION                                                                     |  |

one mark for each correct answer  $(3 \times 1)$  [3]

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9701     | 23    |

(c) Na<sub>2</sub>CO<sub>3</sub> or NaHCO<sub>3</sub> effervescence/colourless gas

or

Na colourless gas

or

 $PCl_3/PCl_5$  etc. steamy fumes

or

 $C_2H_5OH/conc.\ H_2SO_4$  sweet smell of ester

or

 $K_2Cr_2O_7/H^{\scriptscriptstyle +}$  orange solution becomes green

correct reagent (1)

correct observation (1) [2]

[Total: 10]

Syllabus

Paper

[Total: 13]

Mark Scheme

Page 7

|   |                                                   | GCE AS/A LEVEL – May/June 2013                          | 9701 | 23  |     |
|---|---------------------------------------------------|---------------------------------------------------------|------|-----|-----|
| 5 | (a) (i)                                           | CH <sub>2</sub> =CHCO <sub>2</sub> H                    |      | (1) |     |
|   | (ii)                                              | BrCH <sub>2</sub> CHBrCH <sub>2</sub> OH                |      | (1) |     |
|   | (iii)                                             | product is HOCH <sub>2</sub> CH(OH)CH <sub>2</sub> OH   |      |     |     |
|   |                                                   | correct addition across >C=C<                           |      | (1) |     |
|   |                                                   | original –CH₂OH remains                                 |      | (1) |     |
|   | (iv)                                              | HO <sub>2</sub> CCO <sub>2</sub> H                      |      | (1) | [5] |
|   | (b) (i)                                           | nucleophilic substitution                               |      | (1) |     |
|   | (ii)                                              | oxidation                                               |      | (1) | [2] |
|   | (c) (i)                                           | step I                                                  |      |     |     |
|   |                                                   | $H_2$                                                   |      | (1) |     |
|   |                                                   | heat with Ni catalyst                                   |      | (1) |     |
|   |                                                   | step II                                                 |      |     |     |
|   |                                                   | acidified K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |      | (1) |     |
|   |                                                   | heat <b>or</b> distil off product                       |      | (1) |     |
|   | (ii)                                              | structural isomerism or                                 |      |     |     |
|   |                                                   | functional group isomerism                              |      | (1) | [5] |
|   | (d) both oxidation and reduction have occurred or |                                                         |      |     |     |
|   | dis                                               | proportionation has taken place                         |      | (1) | [1] |