

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

JANUARY 2010

CH2

Section A

1. D [1]

2. D [1]

3. BeCl₂ 2 (1)

 PCI_3 pyramidal (1)

CCI₄ tetrahedral (1) [3]

forming Na^+ and O^{2-} ions (1)

5. Mass in 100 g water = 41 g (1)

Mass in 50 g water = 20.5 g (1)

6.

CI

[1]

Section A Total [10]

Section B

- 7. (a) Long chain hydrocarbons have more/stronger intermolecular forces (1)

 van der Waals forces specified (1)
 - Higher temperatures/more energy required to break these forces (1) [3]

QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate

[1]

(b) (i) Alkanes

[1]

- (ii) I Same molecular formula different structure / arrangement / structural formula / displayed formula
- (1) [2]

(1)

Ш

- (1)
- 2-methylbutane (1) 2,2-dimethylpropane (1) [4]
- (c) Breaking down of a long chain hydrocarbon into smaller ones (1)
 - Which are more useful / one of which is an alkene (1) [2]

Total [13]

8.	(a)	(i)	Chloro	ofluorocarbon	[1]
		(ii)		ethetics / propellants in aerosols / cleaning solvents / blowing cs / fire extinguishers	[1]
		(iii)	I	A species / atom / molecule with an unpaired electron	[1]
			II	C - F bond stronger than C - Cl bond	[1]
		(iv)	1	To neutralise the sodium hydroxide	[1]
			II	Silver nitrate	[1]
			Ш	Cream precipitate	[1]
			IV	Ag⁺ + Br⁻ → AgBr	[1]

(b)

Reactants: Intermediate (1)
Polarisation (1) (accept curly arrow to show curly arrow (1) C-Br breaking instead of –ve charge) [3]

(c) (i) Ethene [1]
(ii) In alcohol (and heat) [1]

Total [13]

9.	(a)		C :	Н :	0				
		%	54.5	9.10	36.4	(1)			
		moles	4.54	9.01	2.28	(1)			
		ratio	1.99	3.95	1				
		empirio	cal formula = C ₂ H	₄ O		(1)			
		molecu	ılar formula = C₄ŀ	H_8O_2		(1)		[4]	
	(b)	(i)	Absorption at ab	out 3300 cm ⁻¹ c	characteristic o	of OH group		[1]	
		(ii)	Propanoic acid				(1)		
			Absorption at are	ound 1700 cm ⁻¹	due to C = O	group	(1)	[2]	
	(c)	(Concentrated) sulphuric acid / phosphoric acid / aluminium oxide							
	(d)		omine (water) om brown to cold	ourless			(1) (1)	[2]	
	(e)								

[1]

(f) PVC / Polystyrene / PTFE [1]

Total [12]

10.	(a)	(i)	(i) Ability to attract electrons in a covalent bond/a shared electron pair [1]				
		(ii) Increases			[1]		
		(iii)	Increase in number of protons / charge on the nucleus (But same number of electron shells / no increase in shielding				
			Greater power to attract (bonding pair of) electrons (1 st marking point + 1 other)	(1)	[2]		
	(b)	(i)	 Increases from group I to group IV, large decrease to group V, sligh decrease / not much change to group VII (All three trends 2 marks, any two trends 1 mark) 				
		(ii)	930 – 1650 K		[1]		
		(iii)	Mg has more outer electrons	(1)			
			Therefore stronger bonds since it has more delocalised (vale electrons / stronger metallic bond	ence) (1)	[2]		
		(iv)	Electron cloud / molecular size increases down group	(1)			
			Greater van der Waals / induced dipole forces need to be overcome	(1)	[2]		
	(c)	Giant molecular structure (or similar) (1)					
		with s	trong covalent bonds between atoms	(1)	[2]		

Total [13]

Total [19]

Section B Total [70]