4721

4721 Core Mathematics 1

1 (i)	<i>n</i> = -2	B1
(ii)	<i>n</i> = 3	B1 1
(iii)		M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
	$n = \frac{3}{2}$	$4 \times \sqrt{4}$ with brackets correct if used A1 2
2 (i)	$y = (x-2)^2$	M1 $y = (x \pm 2)^2$ A1 2
(ii)	$y = -(x^3 - 4)$	B1 oe 1
3 (i)	$\sqrt{2 \times 100} = 10\sqrt{2}$	B1 1
(ii)	$\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$	B1
(iii)	$10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$	M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ A1 2
4	$y = x^{\frac{1}{2}}$	
	$2y^2 - 7y + 3 = 0$	M1* Use a substitution to obtain a quadratic or
	(2y-1)(y-3) = 0	factorise into 2 brackets each containing x^3 M1dep Correct method to solve a quadratic
	$y = \frac{1}{2}, y = 3$	A1
	$x = \frac{1}{4}, x = 9$	M1 Attempt to square to obtain xA1
	+	SR If first M1 not gained and 3 and ½ given as final answers, award B1

$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$	A1	$kx^{-\frac{1}{2}}$
$\frac{dy}{dt} = 4x^{-\frac{1}{2}} + 1$		
dx dx	A1	
$=4\left(\frac{1}{\sqrt{9}}\right)+1$	M1	Correct substitution of $x = 9$ into their
$=\frac{7}{3}$	A1	$\frac{7}{3}$ only
(x-5)(x+2)(x+5)	B1	$x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$
$= (x^2 - 3x - 10)(x + 5)$	M1	seen Attempt to multiply a quadratic by a linear
$= x^3 + 2x^2 - 25x - 50$	A1	factor
-50		
-50		
	B1 B1√	+ve cubic with 3 roots (not 3 line segments) (0, -50) labelled or indicated on y-axis
	B1 B1	(-5, 0), (-2, 0), (5, 0) labelled or indicated on <i>x</i> -axis and no other <i>x</i> - intercepts
	3	
8 < 3x - 2 < 11	M1	2 equations or inequalities both dealing with all 3 terms resulting in $a < kx < b$
10 < 3x < 13	A1	10 and 13 seen
$\frac{10}{3} < x < \frac{13}{3}$	A1	
	3	
$x(x+2) \ge 0$	M1 A1	Correct method to solve a quadratic $0, -2$
		U = Z
	$=\frac{7}{3}$ $(x-5)(x+2)(x+5)$ $=(x^{2}-3x-10)(x+5)$ $=x^{3}+2x^{2}-25x-50$ $\frac{-5}{-50}$ $\frac{-2}{-50}$ $\frac{-5}{-50}$ $\frac{-2}{-50}$	$= \frac{7}{3}$ A1 $= \frac{7}{3}$ A1 $= \frac{7}{3}$ B1 $= (x^2 - 3x - 10)(x + 5)$ A1 $= x^3 + 2x^2 - 25x - 50$ A1 $= \frac{5}{-50}$ A1 $= \frac{1}{3}$ B1

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B 1	One term correct
		u.	B 1	Fully correct
			2	
	(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3 - 2k + 1 = 0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		<i>k</i> = 2	A1√ 3	
	(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dx^2} > 0$: min pt	A1	States minimum CWO
			2	
	(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{3}$	A1	WWW at any stage
			3	

9	(i)		B1	$(x-2)^2$ and $(y-1)^2$ seen
		$(x-2)^2 + (y-1)^2 = 100$	B 1	$(x\pm 2)^2 + (y\pm 1)^2 = 100$
		$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
			3	
	(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
		$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in <i>k</i> (or <i>y</i>)
				obtained
		$k = 1 + \sqrt{91}$	A1 3	cao
	(iii)	distance from (-3, 9) to (2, 1)		
		$=\sqrt{(23)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
		$=\sqrt{25+64}$	A1	
		$=\sqrt{89}$		
		$\sqrt{89} < 10$ so point is inside	B1	compares their distance with 10 and makes
				consistent conclusion
			3	
	(iv)	gradient of radius $=\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
				$x_2 - x_1$
		$=\frac{4}{3}$	A1	oe
		gradient of tangent = $-\frac{3}{4}$	B 1√	oe
		-		
		$y-9 = -\frac{3}{4}(x-8)$	M1	correct equation of straight line through (8, 9),
				any non-zero gradient
		$y-9 = -\frac{3}{4}x + 6$		
		$y = -\frac{3}{4}x + 15$	A1	oe 3 term equation
		4	5	

10 (i)	$2(x^2 - 3x) + 11$	B1	<i>p</i> = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	В1√	
		B1√ 2	
(iii)	36-4×2×11	M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	сао
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1de	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1