General Certificate of Education（A－level）
January 2012

Chemistry
CHEM5
（Specification 2420）
Unit 5：Energetics，Redox and Inorganic Chemistry

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered，together with the relevant questions，by a panel of subject teachers．This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination．The standardisation process ensures that the mark scheme covers the candidates＇responses to questions and that every examiner understands and applies it in the same correct way．As preparation for standardisation each examiner analyses a number of candidates＇ scripts：alternative answers not already covered by the mark scheme are discussed and legislated for． If，after the standardisation process，examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner．

It must be stressed that a mark scheme is a working document，in many cases further developed and expanded on the basis of candidates＇reactions to a particular paper．Assumptions about future mark schemes on the basis of one year＇s document should be avoided；whilst the guiding principles of assessment remain constant，details will change，depending on the content of a particular examination paper．

[^0]Copyright © 2012 AQA and its licensors．All rights reserved．

Copyright

AQA retains the copyright on all its publications．However，registered centres for AQA are permitted to copy material from this booklet for their own internal use，with the following important exception：AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre．

Set and published by the Assessment and Qualifications Alliance．

Question	Marking Guidance	Mark	Comments
1（a）	Enthalpy change when 1 mol of an（ionic）compound／lattice（under standard conditions） Is dissociated／broken／separated into its（component）ions The ions being in the gaseous state（at infinite separation）	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow heat energy change Mark independently．Ignore any conditions．
1（b）	There is an attractive force between the nucleus of an O atom and an external electron．	1	Allow any statement that implies attraction between the nucleus and an electron
1（c）	$\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}(\mathrm{~g})+2 \mathrm{e}^{-} \\ & \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{-}(\mathrm{g})+\mathrm{e}^{-} \\ & \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \end{aligned}$ First new level for Mg^{2+} and O above last on L Next level for Mg^{2+} and O^{-}below that Next level for Mg^{2+} and O^{2-} above that and also above that for Mg^{2+} and O	1 1 1 1	Ignore lack of state symbols Penalise incorrect state symbols If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ΔH values Allow＋124 Allow M4 with incorrect number of electrons
1（d）	$\begin{aligned} & \mathrm{LE} \mathrm{MgO}=602+150+736+1450+248-142+844 \\ & =+3888 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Note use of 124 instead of 248 CE＝0 Allow 1 for－3888 Allow no units Penalise wrong units

\begin{tabular}{|c|c|c|c|}
\hline 1（e） \& Forms a protective layer／barrier of \(\mathrm{MgO} / \mathrm{MgO}\) prevents oxygen attacking Mg \& 1 \& Allow activation energy is（very）high Allow reaction（very）slow \\
\hline 1（f） \& \[
\Delta G=\Delta H-T \Delta S
\]
\[
\begin{aligned}
\& \Delta S=(-602-(-570)) \times 1000 / 298 \\
\& =-107 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.107 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
\] \& 1
1
1 \& \begin{tabular}{l}
\[
\Delta S=\frac{(\Delta H-\Delta G)}{T}
\] \\
If units not correct or missing，lose mark Allow－107 to－108 +107 with correct units scores max 1／3
\end{tabular} \\
\hline 1（g） \& \begin{tabular}{l}
1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products \\
System becomes more ordered
\end{tabular} \& 1

1 \& | Decrease in number of moles（of gas／species） |
| :--- |
| Allow gas converted into solid |
| Numbers of moles／species，if given，must be correct |
| Allow consequential provided ΔS is－ve in 1（f） |
| If ΔS is＋ve in 1（f）can only score M1 |

\hline
\end{tabular}

Question	Marking Guidance	Mark	Comments
2（a）	Standard pressure（100 kPa）（and a stated temperature）	1	Allow standard conditions．Do not allow standard states Allow any temperature Allow 1 bar but not 1atm Apply list principle if extra wrong conditions given Penalise reference to concentrations
2（b）	Hydrogen bonds between water molecules Energy must be supplied in order to break（or loosen）them	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow M2 if intermolecular forces mentioned Otherwise cannot score M2 $C E=0 / 2$ if covalent or ionic bonds broken
2（c）	$\begin{aligned} & T=\Delta H I \Delta S \\ & =(6.03 \times 1000) / 22.1 \\ & =273 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow 272 to 273 ；units K must be given Allow $0^{\circ} \mathrm{C}$ if units given 0.273 （with or without units）scores $1 / 3$ only Must score M2 in order to score M3 Negative temperature can score M1 only
2（d）	The heat given out escapes	1	

Question	Marking Guidance	Mark	Comments
3（a）（i）	Ionic lattice／solid／giant ionic Strong（electrostatic）forces／attraction between ions	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	CE $=0 / 2$ if molecules $/$ IMFs $/$ atoms $/$ metallic Allow strong ionic bonds for M2 only Allow lot of energy to break ionic bonds
3（a）（ii）	Molecular／molecules Weak dipole－dipole and／or van der Waals forces between molecules	1	QoL Type of force must be mentioned
3（b）	$\mathrm{P}_{4} \mathrm{O}_{10}$ bigger molecule／has larger surface area than SO_{2} van der Waals forces between molecules stronger	1 1	Allow M_{r} of $\mathrm{P}_{4} \mathrm{O}_{10}$ greater than for SO_{2} If $\mathrm{P}_{4} \mathrm{O}_{10}$ macromolecule／ionic， $\mathrm{CE}=0 / 2$ Allow stronger IMF
3（c）	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-} \\ & 14 \\ & \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow 2 NaOH Allow 12－14 Allow ions Allow－1 to＋2
3（d）	$6 \mathrm{Na}_{2} \mathrm{O}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}$	1	Allow ionic Allow correct formula of product with atoms in any order

Question	Marking Guidance	Mark	Comments
4（a）	$\mathrm{HCl} 1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ （Hydrogen at）100kPa／ 1 bar 298 K	1 1 1	Allow $\mathrm{H}_{2} \mathrm{SO}_{4} 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ Allow $\mathrm{HNO}_{3} 1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ Allow name or formula Concentration can be given after＂conditions＂
4（b）	Pt／Platinum Inert／unreactive／does not create a potential difference Conducts electricity／allows electron flow／conducts／conductor	1 1 1	Mark on if no answer for M1 If wrong answer for M1，only mark on if electrode is $\mathrm{Au}, \mathrm{Ag}, \mathrm{Pb}$ or Ti
4（c）	KCl Does not react with either electrode／solution in electrode Ions can move	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow $\mathrm{NaCl}, \mathrm{KNO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ etc $\mathrm{NOT} \mathrm{NH}_{4} \mathrm{Cl}$ Allow unreactive／inert Allow conducts electricity／electrical connection／ carries charge Do not allow just connects／completes the circuit Do not allow conducts／carries electrons Mark these independently

4（d）	$\mathrm{Pt}\left\|\mathrm{H}_{2}\right\| \mathrm{H}^{+}\| \| \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}$	1	Ignore state symbols Order must be correct ｜must be correct but allow｜instead of ，separating Fe^{3+} from Fe^{2+} Allow，instead of｜separating H_{2} and H^{+}
4（e）（i）	$2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \rightarrow 2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}$	1	Allow multiples
4（e）（ii）	The $\underline{\mathrm{Fe}}^{3+}$ ions would be used up／reaction completed	1	Answer must relate to reactants in 4（e）（i）equation if given Allow reactant／reactants used up Do not allow concentration of Fe^{3+} decreases Allow concentration of Fe^{3+} falls to zero

Question	Marking Guidance	Mark	Comments
5（a）	$\mathrm{H}_{2} \mathrm{O}_{2}$	1	Ignore state symbols
5（b）	$\begin{aligned} & E^{\ominus} \mathrm{Cl}_{2} / \mathrm{Cl}^{-}>E^{\ominus} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Cl}^{-}+1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+} \end{aligned}$	1 1	Allow potential for chlorine $/ \mathrm{Cl}_{2}$ greater than for oxygen／ O_{2} Allow $1.36>1.23 / \mathrm{E}$ cell $=0.13$ Allow multiples Allow＋HCl
5（c）	Activation energy is high／light／UV provides the activation energy／ light breaks chlorine molecule／ $\mathrm{Cl}-\mathrm{Cl}$ bond	1	If light used to break $\mathrm{Cl}-\mathrm{Cl}$ bond award 1 mark and ignore product e．g． Cl^{-}
5（d）	$\begin{aligned} & \mathrm{O} \underline{(-1)} \text { (in } \mathrm{H}_{2} \mathrm{O}_{2} \text {) } \\ & \text { Changes to } \underline{\mathrm{O}(-2)} \text { (in water) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Must give oxidation state of O in $\mathrm{H}_{2} \mathrm{O}_{2}=-1$ Must give oxidation state of O in water $=-2$ $C E=0 / 2$ if refers to oxidation state of H changing
5（e）	$\begin{aligned} & E^{\ominus} \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}>E^{\ominus} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}_{2} \\ & 2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1 1	Allow stated in words Allow $1.77>0.68 / E$ cell $=1.09$ Allow multiples H^{+}and e－must be cancelled

Question	Marking Guidance	Mark	Comments
6（a）	$2 \mathrm{MnO}_{4}{ }^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$	1 1	For all species correct／moles and species correct but charge incorrect For balanced equation including all charges（also scores first mark）
6（b）	Manganate（VII）ions are coloured（purple） All other reactants and products are not coloured（or too faintly coloured to detect）	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow（all）other species are colourless Allow Mn^{2+} are colourless／becomes colourless／ pale pink
6（c）	The catalyst for the reaction is a reaction product Reaction starts off slowly／gradient shallow Then gets faster／rate increases／gradient increases	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow concentration of $\mathrm{MnO}_{4}{ }^{-}$decreases faster／falls rapidly
6（d）	Mn^{2+} ions	1	Allow Mn^{3+} ions
6（e）	$\begin{aligned} & \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+4 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow multiples

Question	Marking Guidance	Mark	Comments
7（a）	Variable oxidation state eg Fe（II）and Fe （III） （Characteristic）colour（of complexes） $\mathrm{eg} \mathrm{Cu}^{2+}(\mathrm{aq}) /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue		Any correctly identified pair Allow two formulae showing complexes with different oxidation states even if oxidation state not given Any correct ion with colour scores M3 and M4 Must show（aq）or ligands OR identified coloured compound（e．g． CoCO_{3} ）
7（b）	Tetrahedral $\left[\mathrm{CuCl}_{4}\right]^{2-} /\left[\mathrm{CoCl}_{4}\right]^{2-}$ Square planar $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}$ Linear $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Any correct complex （Note charges must be correct） Any correct complex Do not allow linear planar $\left[\mathrm{AgCl}_{2}\right]^{-}$etc
7（c）（i）	$\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{EDTA}^{4-} \rightarrow[\text { CaEDTA }]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$	1	If equation does not show increase in number of moles of particles CE $=0 / 3$ for 7（c）（ii） If no equation，mark on

\begin{tabular}{|c|c|c|c|}
\hline 7（c）（ii） \& \begin{tabular}{l}
2 mol of reactants form 7 mol of products \\
Therefore disorder increases \\
Entropy increases／＋ve entropy change／free－energy change is negative
\end{tabular} \& 1
1
1 \& Allow more moles／species of products Allow consequential to 7（c）（i） \\
\hline 7（c）（iii） \& \begin{tabular}{l}
Moles EDTA \(=6.25 \times 0.0532 / 1000=\left(3.325 \times 10^{-4}\right)\) \\
Moles of \(\mathrm{Ca}^{2+}\) in \(1 \mathrm{dm}^{3}=3.325 \times 10^{-4} \times 1000 / 150=\left(2.217 \times 10^{-3}\right)\) \\
Mass of \(\mathrm{Ca}(\mathrm{OH})_{2}=2.217 \times 10^{-3} \times 74.1=0.164 \mathrm{~g}\)
\end{tabular} \& 1
1

1 \& | Mark is for M1 x $1000 / 150$ OR M1 x 74.1 |
| :--- |
| If ratio of Ca^{2+} ：EDTA is wrong or $1000 / 150$ is wrong，CE and can score M1 only |
| This applies to the alternative $\text { M1 x } 74.1 \times 1000 / 150$ |
| Answer expressed to 3 sig figs or better |
| Must give unit to score mark |
| Allow 0.164 to 0.165 |

\hline
\end{tabular}

Question	Marking Guidance	Mark	Comments
8（a）	Electron pair donor	1	Allow lone pair donor
8（b）	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$ （Blue solution）gives a（pale）blue precipitate／solid	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	M2 only awarded if M1 shows Bronsted－Lowry reaction
8（c）	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ （Blue solution）gives a dark／deep blue solution	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow formation in two equations via hydroxide If 8（b）and 8（c）are the wrong way around allow one mark only for each correct equation with a correct observation（max 2／4） M2 only awarded if M1 shows Lewis base reaction
8（d）	（Start with）green（solution） Green precipitate of $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2} / \mathrm{Fe}(\mathrm{OH})_{2} /$ iron（II）hydroxide Slowly changes to brown solid （Iron（II）hydroxide）oxidised by air（to iron（III）hydroxide）	1 1 1 1	Do not allow observation if compound incorrect or not given Allow red－brown ppt Allow turns brown or if precipitate implied Can only score M3 if M2 scored Allow $\mathrm{Fe}(\mathrm{OH})_{2}$ oxidised to $\mathrm{Fe}(\mathrm{OH})_{3}$ by air／ O_{2} Ignore equations even if incorrect

\begin{tabular}{|c|c|c|c|}
\hline 8（e）（i） \& \begin{tabular}{l}
\[
\begin{aligned}
\& 2\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow 2 \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+ \\
\& 3\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right]^{2+}
\end{aligned}
\] \\
White precipitate
\end{tabular} \& 1
1

1 \& | For correct Al species |
| :--- |
| For correct balanced equation |
| Allow equation with formation of $3\left[\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right]^{+}$ from $1 \mathrm{~mol}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ |

\hline 8（e）（ii） \& | $\begin{aligned} & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+} \\ & 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ |
| :--- |
| Complex with 3 en showing 6 correct bonds from N to Co |
| Co－ordinate bonds（arrows）shown from N to Co $\begin{aligned} & 4\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ & 4\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{3+}+4 \mathrm{OH}^{-} \end{aligned}$ | \& 1

1

1
1
1

1 \& | Ignore charge |
| :--- |
| Accept N － N for ligand |
| Ignore incorrect H |
| If C shown，must be 2 per ligand |
| Can only score M3 if M2 correct |
| For Co（III）species |
| For balanced equation（others are possible） |
| Allow $+\mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ |
| If en used can score M4 and M5 only |
| If Cu not Co，can only score M2 and M3 |
| Allow $\mathrm{N}_{2} \mathrm{C}_{2} \mathrm{H}_{8}$ in equations |

\hline
\end{tabular}

[^0]: Further copies of this Mark Scheme are available from：aqa．org．uk

