CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

15317669092

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol A implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √*" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme			Syllabus	Paper
		Cambridge International AS/A Level – October/November 2015				13
1		$x^{2} - 4x + c = 2x - 7 \rightarrow x^{2} - 6x + c + 7(=0)$ 36 - 4(c + 7) < 0 c > 2	M1 DM1 A1 [3]	All terms on one side Apply $b^2 - 4ac < 0$. Allow \leq .		
2		$[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soi	B2,1,0	Seen		
		$21 \times \frac{1}{3^5} \left(x^5 \right) \times 81 \left(\frac{1}{x^4} \right) \qquad \text{soi}$ 7	B1 B1 [4]	Identified as Accept 7 <i>x</i>	s required ter	m
3	(i)	$[3][(x-1)^2][-1]$	B1B1B1 [3]			
	(ii)	$f'(x) = 3x^2 - 6x + 7$	B1	Ft their (i)	+ 5	
		$= 3(x-1)^{2} + 4$ > 0 hence increasing	B1√ [≜] DB1 [3]	Dep B1√ un	lless other va	lid reason
4	(i)	Sector $OCD = \frac{1}{2}(2r)^2 \theta \ (=2r^2\theta)$	B1	$2r^2\theta$ seen s	somewhere	
		Sector(s) $OAB/OEF = (2)\frac{1}{2}r^2(\pi - \theta)$ Total = $r^2(\pi + \theta)$	B1 B1 [3]	Accept with AG www	/without fact	or (2)
	(ii)	Arc $CD = 2r\theta$ Arc(s) AB/EF (2) $r(\pi - \theta)$ Straight edges = 4 r Total $2\pi r + 4r$ (which is independent of θ)	B1 B1 B1 B1 [4]	Accept with Must be sim	/without fact	or (2)

	Page 5	Mark Scheme			Syllabus 9709	Paper 13		
		Cambridge International AS/A Level – Octo	nbridge International AS/A Level – October/November 2015					
5	(i)	$-2p^{2}+16p-24+2p^{2}-6p+2$	M1	Good attem	pt at scalar p	roduct		
		Set scalar product $= 0$ and attempt solution	DM1					
		<i>p</i> = 2.2	A1					
			[3]					
	(ii)	4-2p=2(p-6) or p=2(2p-6)	M1					
		(-2) (-4)						
		$p = 4 \rightarrow \overrightarrow{OA} = \begin{vmatrix} 2 \\ 2 \end{vmatrix} \qquad \overrightarrow{OB} = \begin{vmatrix} 4 \\ 4 \end{vmatrix}$	A1	At least one	of OA and O	DB correct		
		$p = 4 \longrightarrow \overrightarrow{OA} = \begin{pmatrix} -2\\2\\1 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} -4\\4\\2 \end{pmatrix}$						
		$\left \vec{OA} \right = \sqrt{(-2)^2 + 2^2 + 1}^2 = 3$	M1A1	For M1 acce	ept a numeri	cal p		
			[4]					
		ALT 1						
		Compare AB with $OA \rightarrow 10 - 3p = p - 6$ or						
		6 - p = 2p - 6. Similarly cf <i>AB</i> with <i>OB</i>	M1					
		ALT 2						
		$(OA.OB)/(OA \times OB) = 1 \text{ or } -1 \rightarrow$						
		$10p - 22 = \sqrt{5p^2 - 36p} + $	M1					
		$73\sqrt{5p^2-16p+20}$	1711					
		/5\{5\{5\}p 10p + 20						
		$125 n^4 - 260 n^3 + 941 n^2 - 1448 n +$						
		$\rightarrow 125p^4 - 260p^3 + 941p^2 - 1448p +$ 976 = 0 $\rightarrow p$ = 4. Similarly						
		$976 = 0 \rightarrow p = 4$ with <i>OA</i> . <i>AB</i> or <i>OB</i> . <i>AB</i> .						
		ALT 3						
		<i>OA</i> & <i>OB</i> have equal unit vectors. (Similarly						
		with OA & AB or OB & AB.)						
		Hence $(n-6)$						
		1 $\begin{pmatrix} p-0 \\ 2\pi & 0 \end{pmatrix}$						
		$\frac{1}{\sqrt{5p^2 - 36p + 73}} \begin{pmatrix} p - 6\\ 2p - 6\\ 1 \end{pmatrix}$						
		$=\frac{1}{\sqrt{5p^{2}-16p+20}} \begin{pmatrix} 4-2p\\p\\2 \end{pmatrix}$						
		$=\frac{1}{\sqrt{p^2+p^2}}$ p						
		$\sqrt{5p^2 - 16p + 20} \left(\begin{array}{c} 2 \end{array} \right)$	X // 1					
		1 2	M1					
		$\rightarrow \frac{1}{\sqrt{5p^2 - 36p + 73}} = \frac{2}{\sqrt{5p^2 - 16p + 20}}$						
		$\sqrt{5p}$ $50p + 75$ $\sqrt{5p}$ $10p + 20$						
		$\rightarrow 15 p^2 - 128 p + 272 = 0$						
		$\rightarrow (p-4)(15p-68) = 0$						
		$\rightarrow p = 4(or68/15)$						

www.qyconsult.com

	×	更多咨询请登录 www.qyconsult.com					群尧咨询		
Γ	Page 6		Mark Scheme				Paper		
Γ			Cambridge International AS/A Level – October/November 201			Syllabus 9709	13		
					-		-		
6	(i)	(a)	(a) $1.92 + 1.84 + 1.76 + \dots$ oe 20 [2, 1, 02, 10, (, 0, 00)]		,	OR $a=0.96$, $d=04$ & ans doubled/adjusted			
			$\frac{20}{2} [2 \times 1.92 + 19 \times (-0.08)]$ oe	M1	C C				
			23.2 cao	A1 [3]	a, n $a = 1, n = 2$	Corr formula used with corr $d \& a, n$ $a = 1, n = 21 \rightarrow 12.6 (25.2),$ $a = 0.96, n = 21 \rightarrow 11.76 (23.52)$			
		(b)	$1.92 + 1.92(.96) + 1.92(.96)^2 +$	B1	a = 0.90, n =	$-21 \rightarrow 11.70$)(23.32)		
			$\frac{1.92(196^{20})}{196}$	M1	OR a=.96, r	=.96 & ans			
			1–.96 26.8 cao	A1 [3]	/doubled/adjusted Corr formula used with $r = .96 \& th$ a, n $a = .96, n = 21 \rightarrow 13.82$ (27.63)				
		(ii)	$\frac{1.92}{196} = 48 \text{ or } \frac{0.96}{1-0.96} = 24 \text{ \& then}$	M1A1	a = 1, n = 2 $a = 1 \rightarrow 25$ (2)	$1 \rightarrow 14.39$ (2) 50) but must	8.78)		
			Double AG	[2]	1 01	$\frac{-0.96^n}{-0.96} < 48 \rightarrow 0.96^n > 0$ is true' scores SCB1			
					(www) 'which is tru				
7	(a)		$1 + 3\sin^2\theta + 4\cos\theta = 0$	M1	-	multiply by c	os $ heta$		
			$1 + 3(1 - \cos^2 \theta) + 4\cos \theta + 0$	M1	Use $c^2 + s^2$	=1			
			$3\cos^2\theta - 4\cos\theta - 4 = 0 \qquad AG$	A1					
			$\cos\theta = -2/3$ $\theta = 131.8 \text{ or } 228.2$	B1 B1B1√ [≜]	Ignore other Ft for 360 –	r solution 1^{st} soln. -1	extra solns i		
	(L)		c = b/a cao	[6]	range				
	(b)		d = a - b	B1 B1	Radians 2.3	30 & 3.98 sco	ores SCB1		
				[2]	Allow $D = ($	(0, a-b)			
8	(i)		$3x + 1 \leq -1$ (Accept $3x + 1 = -1, 3a + 1 = -1$)	M1	Do not allow gf in (i) to score in (ii				
			$x \le -2/3 \Rightarrow$ largest value of a is $-2/3$ (in term of a)	A1 [2]	Accept $a \le -2/3$ and $a = -2/3$		=-2/3		
	(ii)		$fg(x) = 3(-1 - x^2) + 1$	B1			gf used		
			$fg(x) + 14 = 0 \Longrightarrow 3x^2 = 12 \text{ oe} (2 \text{ terms})$	B1					
			x = -2 only	B1					
	(iii)		$gf(x) = -1 - (3x + 1)^2$ oe	[3] B1	No marke ir	n this part for	foused		
			$gf(x) \leq -50 \Rightarrow (3x+1)^2 \geq 49$ (Allow $\leq or =$	M1		soln of $9x^2$.	-		
			$3x+1 \ge 7 \text{ or } 3x+1 \le -7 \text{ (one sufficient)}$ ww		$\leq \geq 0$	$501101 J_{\Lambda}$	107 PUP/		
			$x \le -8/3$ only wv			or $3x + 8 \leq$	0(one suffic)		

Page 7	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level – Octo	ober/Nove	mber 2015	9709	13
9 (i)	At $x = 4$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	B1			
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 2 \times 3 = 6$	M1A1 [3]	Use of Chain rule		
(ii)	$(y) = x + 4x^{\frac{1}{2}}(+c)$	B 1			
	Sub $x = 4$, $y = 6 \rightarrow 6 = 4 + (4 \times 4^{\frac{1}{2}}) + c$	M1	Must includ		
	$c = -6 \rightarrow (y = x + 4x^{\frac{1}{2}} - 6)$	A1 [3]	1		
(iii)	Eqn of tangent is $y - 6 = 2(x - 4)$ or (6-0)/(4-x) = 2	M1 A1	Correct eqn thru $(4, 6)$ & with $m = their 2$		
	B = (1, 0) (Allow x = 1) Gradient of normal = -1/2	M1 A1	[Expect eqn 8]	of normal: y	$y = -\frac{1}{2}x + $
	C = (16, 0) (Allow x = 16) Area of triangle $= \frac{1}{2} \times 15 \times 6 = 45$	A1 [5]	Or $AB = \sqrt{45}$, $AC = \sqrt{180} \rightarrow$ Area = 45.0		
10 (i)	$f'(x) = 2 - 2(x+1)^{-3}$	B1			
	$f''(x) = 6(x+1)^{-4}$ f0 = 0 hence stationary at x = 0 f''0 = 6 > 0 hence minimum	B1 B1 B1	AG www. Dependent on correct f "(x) except $-6(x+1)^{-4} \rightarrow < 0$ MAX scores SC1		
(ii)	$AB^{2} = (3/2)^{2} + (3/4)^{2}$ $AB = 1.68 \text{ or } \sqrt{45/4} \text{ or }$	[4] M1			
	$AB = 1.68 \text{ or } \sqrt{45/4}$ oe Area under curve = $\int f(x) = x^2 - (x+1)^{-1}$	A1 [2]			
(iii)	$= \left(1 - \frac{1}{2}\right) - \left(\frac{1}{4} - 2\right) = 9/4$	B1	Ignore + <i>c</i> even if evaluated Do not penalise reversed limits		
	(Apply limits $-\frac{1}{2} \rightarrow 1$) Area trap. $=\frac{1}{2}(3+\frac{9}{4}) \times \frac{3}{2}$	M1A1 M1	Allow rever positive	sed subtn if	final ans
	= 63/16 or 3.94 Shaded area $63/16 - 9/4 + 27/16 \text{ or } 1.69$	A1 A1			
	ALT eqn AB is $y = -\frac{1}{2}x + \frac{11}{4}$	[6] B1			
	Area = $\int -\frac{1}{2}x + \frac{11}{4} - \int 2x + (x+1)^{-2}$ = $\left[-\frac{1}{4}x^2 + \frac{11}{4}x \right] - \left[x^2 - (x+1)^{-1} \right]$	M1	-	egration of at	
		A1A1	U U	ven if evaluates egration havit	
	Apply limits $-\frac{1}{2} \rightarrow 1$ to both integrals 27/16 or 1.69	M1 A1	·	sed subtn if	final ans