4730 Mark Scheme January 2008

4730 Mechanics 3

1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction
1				1 or using $1 = \ln(v - u) \ln x$ or y direction
	Component of velocity in x-direction is -2ms ⁻¹	A1		
	Component of velocity in y-direction is 4.8ms ⁻¹	A1		
	Speed is 5.2ms ⁻¹	A1	4	AG
SR For o	candidates who obtain the speed without finding the required	componen	ts of v	elocity (max 2/4)
	Components of momentum after impact are -1 and 2.4 Ns	B1		
	Hence magnitude of momentum is 2.6 Ns and required	B1		
	speed is $2.6/0.5 = 5.2 \text{ms}^{-1}$			
	-	N/1		Farming I m(0 m) an
	(ii)	M1		For using $I_y = m(0 - v_y)$ or
				$I_y = -y$ -component of 1^{st} impulse
	Component is –2.4Ns	A1	2	
		1	T	
2	(i)	M1		For 2 term equation, each term
				representing a relevant moment
	$50x1\sin\beta = 75x2\cos\beta$	A1		
	· · · · · · · · · · · · · · · · · · ·	A 1	2	A.C.
	$\tan \beta = 3$	A1	3	AG
	(ii) Horizontal force is 75N	B1		
	Vertical force is 50N	B1	2	
ļ	(iii)	M1		For taking moments about A for the
	\ /	1,11		whole or for AB only
	For not more than one arror in	A1		Where $\tan \alpha = 0.75$
	For not more than one error in	AI		where $\tan \alpha = 0.75$
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$			
	$75(2\cos\alpha + 2\cos\beta)$ or Wx1sin α +			
	•			
	$50x2\sin\alpha = 75x2\cos\alpha$			
	0.6W + 107.4 = 167.4 or $0.6W + 60 = 120$	A1		
	W = 100	A1	4	
3	(i)	M1		For using the principle of conservation
				of momentum in the i direction
	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1		
	(*	M1		For using NEL
	(4+8)e = b - a (12e = b - a)	A1		Tor using Tibe
	Component is $4e \text{ ms}^{-1}$ to the left	A1	5	'to the left' may be implied by
	Component is 4e ms to the left	AI	3	'to the left' may be implied by
				a = -4e and arrow in diagram
	(ii) $b = 8e \text{ ms}^{-1}$	B1ft		ft b = -2a or b = a + 12e
		M1		For using ' j component of A's velocity
				remains unchanged'
	$(8e)^2 = (4e)^2 + v^2$	A1ft		$ft b^2 = a^2 + v^2$
	v = 4	A1	4	
	•	1		
4	(i) $[mg - 0.49mv = ma]$	M1		For using Newton's second law
		A1		
	$mv \frac{dv}{dx} = mg - 0.49 mv$			
		M1		For relevant manipulation
	$\left[\begin{array}{c c} v \left(\frac{dv}{d} \right) & \frac{dv}{d} \end{array}\right] = 1$	101 1		1 or resevant manipulation
		M1		For synthetic division of b
	$\left[\frac{v}{9.8 - 0.49 \ v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 \ v) - 9.8}{9.8 - 0.49 \ v} \right) \right]$	M1		For synthetic division of v by
		1		g - 0.49v, or equivalent
	$\left(\frac{20}{20-v}-1\right)\frac{dv}{dx}=0.49$	A1	5	AG
	(ii)	M1		For separating the variables and
				integrating
	$\int \frac{20}{4v} dv = -20 \ln(20 - v)$	B1		
	$\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$			
	$-20 \ln(20 - v) - v = 0.49x (+C)$	A1ft		
	$[-20 \ln 20 = C]$	M1		For using $v = 0$ when $x = 0$
1	$x = 40.8(\ln 20 - \ln(20 - v)) - 2.04v$	A1	5	Accept any correct form
	$V = /U \times U = /U = U = U = V = /U = /U = V = V = V = V = V = V = V = V = V = $			

4730 Mark Scheme January 2008

		1	1	
5	(i)	M1		For using Newton's second law with a =
				0
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		
	Extension is 0.8m	A1	3	AG
	(ii) PE loss = $mg(1.2 + 0.8)\sin 30^{\circ}$	B1		
	(mg)			
	EE gain = $0.75 \text{mg}(0.8)^2/(2 \text{x} 1.2)$ (0.2 mg)	B1		
	$[\frac{1}{2} \text{ mv}^2 = \text{mg} - 0.2 \text{mg}]$	M1		For an equation with terms representing
				PE, KE and EE in linear combination
	Maximum speed is 3.96ms ⁻¹	A1	4	ŕ
	(iii) PE loss = $mg(1.2 + x)sin30^{\circ}$ or	B1ft		ft with x or d – 1.2 replacing 0.8 in (ii)
	mgdsin30°	2110		is with a si to 112 replacing one in (ii)
	EE gain = $0.75 \text{mgx}^2/(2x1.2)$ or	B1ft		ft with x or d – 1.2 replacing 0.8 in (ii)
	$0.75 \text{mg}(d - 1.2)^2 / (2x1.2)$	Din		it with A of G 11.2 replacing 0.0 in (ii)
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a
	[X - 1.0X - 1.52 - 0, U - 4U + 1.44 - 0]	IVII		3 term quadratic in x or d
	Displacement is 3.6m	A1	4	3 term quadratic in x or d
A 1tomost				d/d
	tive for parts (ii) and (iii) for candidates who use Newton's sec			
In the 10	bllowing x, y and z represent displacement from equil. pos ⁿ , ex	1	na aisi I	
	$[mv dv/dx = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2,$	M1		For using N2 with $a = v \frac{dv}{dx}$
	$mv dv/dy = mgsin30^{\circ} - 0.75mgy/1.2,$			
	$mv dv/dz = mgsin30^{\circ} - 0.75mg(z - 1.2)/1.2$			
	$v^2/2 = -5gx^2/16 + C$ or	A1		
	$v^2/2 = gy/2 - 5gy^2/16 + C$ or			
	$v^2/2 = 5gz/4 - 5gz^2/16 + C$			
	$[C = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		For using $v^2(-0.8)$ or $v^2(0)$ or $v^2(1.2) =$
	$C = 0.6g - 5g(1.2/4) + 5g(1.2)^2/16$			2(g sin30°)1.2 as appropriate
	$v^2 = (-5x^2/8 + 1.6)g \text{ or } v^2 = (y - 5y^2/8 + 1.2)g \text{ or } v^2 = (5z/2)$	A1		
	$-5z^2/8 - 0.9$)g			
	(ii) $[v_{\text{max}}^2 = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g]$	M1		For using $v_{\text{max}}^2 = v^2(0)$ or $v^2(0.8)$ or
	-0.9g]			$v^2(2)$ as appropriate
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[5x^2 - 12.8 = 0 \Rightarrow x = 1.6,$	M1		For solving $v = 0$
	$5y^2 - 8y - 9.6 = 0 \implies y = 2.4,$			_
	$5z^2 - 20z + 7.2 = 0 \implies z = 3.6$			
	Displacement is 3.6m	A1	8	
Alternat	tive for parts (ii) and (iii) for candidates who use Newton's sec		nd SH	M analysis.
	$\int [m \ddot{x} = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2 \rightarrow$	M1		For using N2 with
				$v^2 = \omega^2(a^2 - x^2)$
	$\ddot{x} = -\omega^2 x; v^2 = \omega^2 (a^2 - x^2)$, ,		
	$v^2 = 5g(a^2 - x^2)/8$	A1		7,000
		M1		For using $v^2(-0.8) =$
	2 2 -	1		2(gsin30°)1.2
	$v^2 = 5g(2.56 - x^2)/8$	A1		2 2
	(ii) $[v_{\text{max}}^2 = 5g \times 2.56 \div 8]$	M1		For using $v_{\text{max}}^2 = v^2(0)$
	Maximum speed is 3.96ms ⁻¹	A1		
	(iii) $[2.56 - x^2 = 0 \rightarrow x = 1.6]$	M1		For solving $v = 0$
	Displacement is 3.6m	A1		

4730 Mark Scheme January 2008

6	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation of energy
	Speed is 3.13ms ⁻¹	A1		
	$[T = mv^2/r]$	M1		For using Newton's second law
				horizontally and $a = v^2/r$
	Tension is 1.96N	A1ft	4	
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[-2g\cos\theta = 49 - 4g + 4g\cos\theta]$	M1		For eliminating v ²
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	
Alterna	tive for candidates who eliminate v^2 before using $T = 0$.			
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - mg\cos\theta = m(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v ²
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	A1ft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	

7	(i) $T = 4mg(4 + x - 3.2)/3.2$	B1		
	[ma = mg - 4mg(0.8 + x)/3.2]	M1		For using Newton's second law
	$4\ddot{x} = -49x$	A1	3	AG
	(ii) Amplitude is 0.8m	B1		(from 4 + A = 4.8)
	Period is $2\pi/\omega$ s where $\omega^2 = 49/4$	B1		
		M1		String is instantaneously slack when
				shortest $(4 - A = 3.2 = L)$. Thus required
		A 1	,	interval length = period.
	Slack at intervals of 1.8s	A1	4	AG
	(iii) $[ma = -mg\sin\theta]$	M1		For using Newton's second law tangentially
	- 0	A1		tangentiany
	$\mathrm{mL}\ddot{\theta} = \mathrm{-mgsin}\theta$			
	For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	A1	3	AG
	$-(g/L)\theta$			
	(iv) $[\theta = 0.08\cos(3.5x0.25)] = 0.05127$	M1		For using = $_{0}\cos\omega t$ where $\omega^{2}=12.25$
				(may be implied by $\dot{\mathcal{G}} = -\omega$ osin ω t)
	$[\dot{\theta} = -3.5(0.08)\sin(3.5\times0.25),$	M1		For differentiating = $_{0}$ cos ω t and
	$\dot{\theta}^2 = 12.25(0.08^2 - 0.05127^2)$			using $\dot{\mathcal{G}}$ or for using
	0 -12.23(0.08 -0.03127)]			$\dot{\theta}^2 = \omega^2 (\theta_0^2 - \theta^2)$ where $\omega^2 = 12.25$
	$\dot{\theta} = \mp 0.215$	A1		May be implied by final answer
	• • • • • • • • • • • • • • • • • • • •			
	[v = 0.215x9.8/12.25]	M1		For using $v = L \mathcal{G}$ and $L = g/\omega^2$
	Speed is 0.172 ms ⁻¹	A1	5	