

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2011

CH2

SECTION A

- 1. (a) Specific health problem e.g. liver disease / cirrhosis / heart failure / stroke [1]
 - (b) Acidified potassium dichromate(VI) / Acidified potassium manganate(VII) [1]
- 2. Bones / teeth / coral / shells / muscle contraction (accept skeleton) [1]
- 3. B/H_2O [1]
- 4. $Cl_2 + 2 \text{ NaBr} \rightarrow Br_2 + 2 \text{ NaCl}$ or $Cl_2 + 2 Br^- \rightarrow Br_2 + 2 Cl^-$ [1] (State symbols not required)
- 5. (a) δ O-H δ + δ C-H δ + δ + B-Cl δ δ + C=O δ 2 correct for 1 mark, all four for 2 marks [2]
 - (b) O-H [1]

6.

Element	Initial oxidation State Final oxidation state		Oxidation or reduction		
xenon	+2	0	reduction		
oxygen	-2	0	oxidation		

¹ mark for each line completely correct

(If all oxidation states correct without oxidation/reduction indicated then award 1 mark in total.) [2]

Section A Total [10]

SECTION B

7. (a)

Test	Observation		
Flame test	<u>Lilac</u> flame (1)		
Addition of nitric acid followed by aqueous silver nitrate	White precipitate (1)		
Addition of sodium hydroxide solution	White precipitate (1)		

[3]

(b) Heat to evaporate some water to form a saturated solution (Do not accept evaporate all water or to dryness) (1)

Allow to cool for crystals to form (1)

Filter off crystals / evaporate at room temperature (1)

[3]

(c) (i) 1.25 g

[1]

(ii) 169.9 / 170

[1]

(iii) Moles carnallite = $1.95 / 169.9 = 1.15 \times 10^{-2}$ moles Moles water = $1.25 / 18.02 = 6.94 \times 10^{-2}$ moles

Both moles for (1)

$$X = 6.94 \times 10^{-2} / 1.15 \times 10^{-2} = 6$$
 (Mark consequentially) (1) [2]

(d) Moles carnallite = $100\ 000\ /\ 169.9 = 588.6\ moles$ (1)

This produces 588.6 moles of MgCl₂ (1)

Mass $MgCl_2 = 588.6 \times 95.3 = 56.1 \text{ kg or } 56100 \text{ g}$ [units must be stated to obtain mark] (1)

[3]

Total [13]

8. (a) (i) Compounds A and B have C=C double bonds, but compound B does not (1)

There is restricted rotation **about the double bond** (1) [2]

(ii)

H

C

H

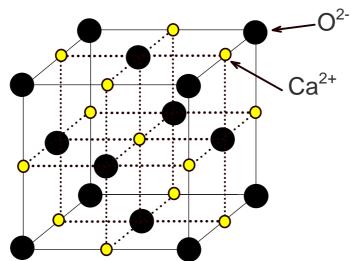
C

Br

Correct connectivity of bonds (1)

Correct geometrical isomer (1) [2]

- (b) (i) Orange to colourless (do not accept 'clear') [1]
 - (ii) 2,3-dibromobutane [1]
 - (iii) Cannot form hydrogen bonds / strong intermolecular forces with water molecules [1]
 - (iv) Sodium or potassium hydroxide (1)
 Dissolved in alcohol and heat (1) [2]
- (c) (i) 1 mark for arrows in first diagram; 1 mark for dipole on H-Br molecule; 1 mark for arrow in second diagram; 1 mark for charges in second stage [4]


(ii) Electrophilic addition [1]

Total [14]

- 9. (a) M_r (CaCO₃) = 100.1 M_r (CaO) = 56.1 both values gives 1 mark Atom economy = (56.1 /100.1) x 100 = 56.0 % (1) [2]
 - (b) 1 mark showing movement of electrons; 1 mark showing dot and cross of CaO [2]

(c) (i) 1 mark for cubic arrangement; 1 mark for 6 counterions arranged octahedrally around each ion [2]

Accept smaller diagram that shows the octahedral arrangement of ions around counterions

- (ii) (CaO and NaCl have 1:1 formulae), CaCl₂ has 1:2 [1]
- (d) (i) $3 \text{ Ca} + 2 \text{ H}_3 \text{PO}_4 \rightarrow \text{Ca}_3 (\text{PO}_4)_2 + 3 \text{ H}_2$

1 mark for formula of calcium phosphate; 1 mark for equation

All total of 1 mark for balanced equation with incorrect formula for calcium phosphate e.g. $2 \text{ Ca} + 2 \text{ H}_3\text{PO}_4 \rightarrow 2 \text{ CaPO}_4 + 3 \text{ H}_2$

(ii) Calcium sulfate is insoluble (1)

This produces a **layer** over the surface of the metal preventing reaction (1) [2]

Total [11]

[2]

10.

(a)						
(b)	Fractional distillation (1) Different products have different boiling points (1)					
(c)	(i)	One intermediate is a C ₅ H ₁₁ * radical / a five carbon radical (1) Two of these radicals combine together in a termination reaction (1) [2]			
	(ii)	Peak at 650-800 cm ⁻¹ (due to C-Cl bond) in chloropentane will be gone (1) Peak at 2500-3500 cm ⁻¹ (due to O-H) in pentanol will be present (also accept 1000-1300 cm ⁻¹ for C-O bond) (1)	[2]			
(d)	(i)	Pentan-1-ol has hydrogen bonding between molecules but 1-chloropentane does not (1) Hydrogen bonding is the strongest intermolecular force (1)	[2]			
	(ii)	Both compounds have similar hydrogen bonding between molecules Pentan-1-ol is a larger molecule than propan-1-ol (1) Pentan-1-ol has more stronger van der Waals forces between molecules than propan-1-ol (1)	i (1)			
		Any 2 out of 3	[2]			
	(iii)	Propan-1-ol (1)				
		-OH can hydrogen bond with water (whilst -CI cannot) (1)				
		Pentanol has a larger part of the molecule that cannot hydrogen bo / hydrocarbon chain is hydrophobic (1)	nd [3]			
(e)	C-CI h	has the largest δ + on carbon / C-I has smallest δ + on carbon (1)				
	If dipole was controlling factor, C-Cl would be fastest as nucleophile most attracted to this (1)					
	Easier to break bonds as go down the group / bonds get weaker down the group (1)					
	If bond strength was the governing factor we would expect rate to become greater down the group (1)					
	•	e is not the controlling factor for rate / Bond strength is the governing				
	factor	(1) [MAX	X 4]			
	QWC: of mea	legibility of text, accuracy of spelling, punctuation and grammar, clai aning.	<i>rity</i> [1]			

11.	(a)	(i)	Li	[1]	
		(ii)	K	[1]	
		(iii)	Li / Na / K / Mg / Ca	[1]	
		(iv)	0	[1]	
	(b)	• G	ctures (Max 4 points on structure) Graphite: Giant covalent structure OR Hexagonal layers of carbon atoms Graphite: Delocalized electrons between the layers		

- Aluminium: Lattice of **positive** metal **ions**
- Aluminium: (Sea of) delocalized electrons
- Caesium chloride: (Lattice of) anions and cations / giant ionic

Conditions required

- Graphite and Aluminium can conduct as solids
- Caesium chloride must be a liquid/solution to conduct

How material conducts

- Aluminium and Graphite: (Delocalised) electrons move to form a current
- Caesium chloride: Mobile ions carry allow electricity to flow 1 mark for each point giving [MAX 6]

QWC: 2 marks [2]

- selection of a form and style of writing appropriate to purpose and to complexity of subject matter.
- organisation of information clearly and coherently; use of specialist vocabulary where appropriate.
- (c) Nanoscale electrical wires / electronic circuitry [1] (accept miniature/tiny)

Total [13]

Section B Total [70]