更多咨询请登录 www.qyconsult.com 群尧咨询

GCE

Mathematics

Unit 4727: Further Pure Mathematics 3

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Question	Answer	Marks	Guida	nce
1 (i)	$ \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \times \begin{pmatrix} 3\\5\\2 \end{pmatrix} = \begin{pmatrix} 7\\-7\\7 \end{pmatrix} = 7\begin{pmatrix} 1\\-1\\1 \end{pmatrix} $	M1 A1		M1 requires evidence of method for cross product or at least 2 correct values calculated
	(eg) $z = 0 \Rightarrow 2x + y = 4,3x + 5y = 13 \Rightarrow x = 1, y = 2$	M1		or any valid point e.g.(0, 3, -1), (3, 0, 2)
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1	oe vector form	Must have full equation including 'r ='
	Alternative: Find one point	M1		
	Find a second point and vector between points	M1		
	multiple of $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
	Alternative: Solve simultaneously	M1	to at least expressions for x,y,z parametrically, or two relationship between 2 variables.	
		M1	between 2 variables.	
	Point and direction found	A1		
	$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	A1		
		[4]		

Q	uesti	on	Answer	Marks	Guida	nnce
1	(ii)		$\frac{ 2 \times 2 + 5 - 2 - 4 }{\sqrt{2^2 + 1^2 + 1^2}} = \frac{7}{\sqrt{6}}$	M1 A1	Condone lack of absolute signs for M1	2.86 with no workings scores M1
			Alternative: find parameter for perpendicular meets plane and use to find distance	M1	oe surd form. isw For complete method with calculation errors	look for $\lambda = -7/6$
				[2]		
2			$u = y^2 \Rightarrow \frac{du}{dx} = 2y\frac{dy}{dx}$	M1	Correctly finds	$\operatorname{Or} \frac{dy}{dx} = \frac{1}{2}u^{-\frac{1}{2}}\frac{du}{dx}$
			so DE $\Rightarrow 2y \frac{dy}{dx} - 4y^2 = 2e^x$	M1	or for complete unsimplified substitution	
			$\Rightarrow \frac{du}{dx} - 4u = 2e^{x}$ $I = \exp \int -4 dx = e^{-4x}$	A1		Can be implied by next A1
			$I = \exp \int -4 \mathrm{d}x = \mathrm{e}^{-4x}$	A1ft		Must have form $\frac{du}{dx} + f(x)u = g(x) \text{ for this mark and}$
						any further marks Can be implied by subsequent work
			$e^{-4x} \frac{du}{dx} - 4e^{-4x} u = 2e^{-3x}$	M1*	Multiples through by IF of form e ^{kx} , simplifying RHS	
			$ue^{-4x} = -\frac{2}{3}e^{-3x}(+A)$	*M1dep*	Integrates	
			$u = -\frac{2}{3}e^x + Ae^{4x}$	M1dep *	Rearranges to make u or y ² the subject	No more than 1 numerical error at this step
			$y = \sqrt{-\frac{2}{3}e^{x} + Ae^{4x}}$	A1	Cao	ignore use of '±'
			Alternative from 4 th mark to 6 th mark			
			CF: $(u=) Ae^{4x}$	A1		
			PI: $u = ke^x$, $\frac{du}{dx} = ke^x$	M1*	PI chosen & differentiated correctly	
			$ke^x - 4ke^x = 2e^x$, $k = -\frac{2}{3}$	M1 dep*	Substitutes and solves	
				[8]		

Ç	uestion	Answer	Marks	Guid	ance
3	(i)	$z^6 = 1 \Rightarrow z = e^{2k\pi i/6}$	M1		
		k = 0,1,2,3,4,5	A1	Oe exactly 6 roots	accept roots 1, -1 given as integers.
		Diagram	B1	6 roots in right quadrant,	
			B1	correct angles and moduli	as evidenced by labels, circles, or accurate diagram, or by co-ordinates
			[4]		
3	(ii)	$(1+i)^6 = \left(\sqrt{2} e^{\frac{1}{4}\pi i}\right)^6$	M1	Attempts modulus-argument form, getting at least 1 correct	
		$8e^{\frac{6}{4}\pi i}$	M1	for (mod) ⁶ and arg x 6	
		=-8i	A1	ag	complete argument including start line
		Alternative:			
		$(1+i)^6 = 1 + 6i + 15i^2 + 20i^3 + 15i^4 + 6i^5 + i^6$	M1		
		=1+6i-15-20i+15+6i-1	M1	no more than 1 term wrong	Sc 2 for only lines 2 & 3correct
		=-8i	A1	ag	
		Alternative: $(1+i)^2 = 2i$	M1		
		$(1+i)^6 = \left(2i\right)^3$	M1		
		=-8i	A1 [3]	ag	

Question	1 Answer	Marks	Guid	ance
3 (iii)	$z^6 = -8i \Rightarrow z = (1+i)e^{2k\pi i/6}$	M1		
	$= \sqrt{2}e^{i\frac{\pi}{4}} e^{2k\pi i/6}$ $\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0,1,2,3,4,5$	M1		
	$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0,1,2,3,4,5$	A1	or equivalent k	
	Alternative: $z^6 = 8e^{i\pi(\frac{3}{2} + 2k)}$	M1		
	$\sqrt{2} e^{i\pi(1/4+k/3)}, k = 0,1,2,3,4,5$	M1 A1 [3]		or equivalent: e.g. $\sqrt{2} e^{i\pi(-1/12+k/3)}$ accept unsimplified modulus

Q	uestion	Answer	Marks	Guid	ance
4	(i)		B1	2 or more	Ignore 1
		element (1) 3 7 9 11 13 17 19	B1	4 or more	
		inverse (1) 7 3 9 11 17 13 19	B1	all 7 correct	
			[3]		
4	(ii)	(1 has order 1)			
		9,11,19 have order 2	M1	Correctly identifies order of all elements	Allow one error
		$3^2 = 9 \Rightarrow 3^4 = 1$ so order 4			
		similarly 7,13,17 order 4	В1	justifies order for at least 1 element of order 4	must show workings towards a^4 for demonstration that these elements are order 4'
		no element of order 8 so not cyclic	A1	www	condone "no generator" in place of "no element or order 8"
			[3]		
4	(iii)		M1	For two sets which both contain "1" and all (4) elements' inverses	
			B1	One subgroup of order 4	
		{1,13, 9, 17} and {1, 3, 9, 7}	A1		
			M1	for correspondence of "their" elements of same order	
		$1 \leftrightarrow 1, 9 \leftrightarrow 9, 3 \leftrightarrow 13, 7 \leftrightarrow 17$	A1	or $3 \leftrightarrow 17, 7 \leftrightarrow 13$	
			[5]		

Question	Answer	Marks	Guida	nce
5	AE: $\lambda^2 + 5\lambda + 6 = 0$			
	$\lambda = -2, -3$	B1		
	CF: $Ae^{-2x} + Be^{-3x}$	B1ft		
	PI: $y = ae^{-x}$	B1ft		
	$ae^{-x} - 5ae^{-x} + 6ae^{-x} = e^{-x}$	M1	Differentiate and substitute	
	2a=1			
	$a=\frac{1}{2}$	A1		
	GS: $(y =)\frac{1}{2}e^{-x} + Ae^{-2x} + Be^{-3x}$	A1ft		ft must be of form " $k e^{-x}$ plus a standard CF form" with 2 arbitrary constants
	$x = 0, y = 0 \Longrightarrow \frac{1}{2} + A + B = 0$	M1	Use condition on GS	Must have 2 arbitrary constants
	$y' = -\frac{1}{2}e^{-x} - 2Ae^{-2x} - 3Be^{-3x}$	M1*	Differentiate their GS of form $y = k e^{-x} + A e^{mx} + B e^{nx} \text{ where k, } m, n$ are non-zero constants and m, n not 1	
	$x = 0, y' = 0 \Rightarrow -\frac{1}{2} - 2A - 3B = 0$			
	$A = -1, B = \frac{1}{2}$	M1dep*	Use condition and attempt to find A, B	
	$y = \frac{1}{2}e^{-x} - e^{-2x} + \frac{1}{2}e^{-3x}$	A1	www	Must have 'y ='
		[10]		

(uestion	Answer	Marks	Guida	nce
6	(i)	$l \parallel \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} \Pi \perp \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} \text{ so } \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} = 0 \Rightarrow l \parallel \Pi$	M1	dot product of correct vectors = 0	
		$(1, -2, 7)$ on l but $4 \times 1 - 2 - 7 = -1 \neq 8$ so not in Π	M1	substitute point on line into ∏ and calculate d	
		hence l not in Π	A1	Full argument includes key components	Argument can be about a general point on line
			[3]		
6	(ii)	$ (\mathbf{r} =) \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} $	B1		
		closest point where meets Π			
		$4(1+4\lambda)-(-2-\lambda)-(7-\lambda)=8$	M1	parametric form of (x, y, z) substituted into plane	
		$\Rightarrow \lambda = \frac{1}{2}$	Alft		
		$\Rightarrow \mathbf{r} = \begin{pmatrix} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{pmatrix}$	A1		
			[4]		
6	(iii)	$\mathbf{r} = \begin{pmatrix} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$	B1ft	oe	must have " r ="
			[1]		

C	uestio	n	Answer	Marks	Guid	ance
7	(i)		$2i\sin\theta = e^{i\theta} - e^{-i\theta}$	B1	any equivalent form	If use z, must define it
			$2i\sin n\theta = e^{in\theta} - e^{-in\theta}$			
			$\left(2i\sin\theta\right)^5 = \left(e^{i\theta} - e^{-i\theta}\right)^5$			
			$=e^{i5\theta}-5e^{i3\theta}+10e^{i\theta}-10e^{-i\theta}+5e^{-i3\theta}-e^{-i5\theta}$	M1*	binomial expansion	can be unsimplified
			$32i\sin^5\theta = (e^{5i\theta} - e^{-5i\theta}) - 5(e^{3i\theta} - e^{-3i\theta}) + 10(e^{i\theta} - e^{-i\theta})$	M1dep*	grouping terms	Award B1 then sc M1A1 for candidates who omit this stage from otherwise complete argument
			$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin \theta)$			
			$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin \theta)$ $\sin^5 \theta = \frac{1}{16}(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$	A1	AG	must convince on the $\frac{1}{16}$ and on the elimination of i
				[4]		
7	(ii)		$16\sin^5\theta - 10\sin\theta = \sin 5\theta - 5\sin 3\theta$	M1*	Attempts to eliminate sin5θ and sin3θ	
			$16\sin^5\theta - 6\sin\theta = 0$	A1		Or $16\sin^5\theta = 6\sin\theta$
			$\sin\theta = 0, \pm \sqrt[4]{\frac{3}{8}}$	M1dep*	must have 3 values for $\sin \theta$	
			$\theta = 0, \pm 0.899$	A1		
				[4]		

Question	Answer	Marks	Guidan	ce
8 (i)	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is identity	B1		
	$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G $	M1 A1	for M1, must at least get matrix in form $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$, or state existence of inverse due to non-singularity	
	$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		
	and $(ac-bd)^{2} + (bc+ad)^{2} = a^{2}c^{2} + b^{2}d^{2} + b^{2}c^{2} + a^{2}d^{2}$	M1 A1	Must not attempt to prove commutativity in (i)	
	$=(a^2+b^2)(c^2+d^2)\neq 0$	[6]		
8 (ii)	$ \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} ac - bd & -bc - ad \\ bc + ad & ac - bd \end{pmatrix} $	M1		must also consider matrices reversed, but may be seen in (i)
	$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} $ so commutative	A1		
		[2]		
8 (iii)	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} $	M1	g^2 must be correct	
	$ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	M1	allow 1 error in getting g^4	
	order 4	A1 [3]		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

