

Mark Scheme (Results) Summer 2010

GCE

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024765 All the material in this publication is copyright © Edexcel Ltd 2010

General Marking Guidance

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)

3. Abbreviations

These are some of the marking abbreviations that will appear in the mark scheme

- ft follow through
- awrt answers which round to
- oe or equivalent (and appropriate)
- isw ignore subsequent working
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- SC: special case

PhysicsAndMathsTutor.com June 2010 Statistics S1 6683 Mark Scheme

	T		1
Question Number	Scheme	Marks	5
Q1 (a)	$r = \frac{8825}{\sqrt{1022500 \times 130.9}},$ = awrt 0.763	M1 A1	(2)
(b)	Teams with high attendance scored more goals (oe, statement in context)	B1	(1)
(c)	0.76(3)	B1ft	(1)
		Та	otal 4
(a)	M1 for a correct expression, square root required Correct answer award 2/2		
(b)	Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe		
(c)	Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.		

Question Number	Scheme	Marks
Q2 (a)	R $P(R)$ and $P(B)$	B1
	$5/12$ $1/3$ T $1/2$ H 2^{nd} set of probabilities	B1
	7/12 B T	
		(2)
(b)	$P(H) = \frac{5}{12} \times \frac{2}{3} + \frac{7}{12} \times \frac{1}{2}, = \frac{41}{72}$ or awrt 0.569	M1 A1
(b)	12 3 12 2 72	(2)
(c)	$P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{11}{41}}, = \frac{20}{41}$ or awrt 0.488	M1 A1ft A1
	$\frac{1}{72}$ 41	(3)
(d)	$\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$	M1 A1ft
	$= \frac{25}{144} + \frac{49}{144} = \frac{74}{144} \text{or} \frac{37}{72} \text{ or awrt } 0.514$	A1 (2)
	144 144 144 72	(3)
		Total 10
(a)	The same process and the same states of the same st	
	2^{nd} B1 for probabilities on the second set of branches. Accept $0.\dot{6}$, $0.\dot{3}$, 0.5 and $\frac{1.5}{3}$	
	Allow exact decimal equivalents using clear recurring notation if required.	
(b)	M1 for an expression for $P(H)$ that follows through their sum of two products of probabilities from their tree diagram	
(c)	<u>5</u>	
Formula seen	M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\frac{3}{12}}{\text{(their (b))}}$ award M1.	
Formula not seen	M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{3}}$.	
	1^{st} A1ft for a fully correct expression or correct follow through 2^{nd} A1 for $\frac{20}{41}$ o.e.	
(d)	M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram	n
	1 st A1 for both values correct or follow through from their original tree and + 2 nd A1 for a correct answer	
	Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0	

Question	Scheme	Marks	
Number Q3 (a)	$2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)	M1	
	$a = \frac{1}{4} \text{ or } 0.25$	A1	(2)
(b)	$\mathrm{E}(X) = \underline{1}$	B1	(1)
(c)	$E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} $ (= 3.1)	M1	
	$Var(X) = 3.1 - 1^2$, $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$	M1 A1	(3)
(d)	$\operatorname{Var}(Y) = (-2)^2 \operatorname{Var}(X), \qquad = \underline{8.4 \text{ or } \frac{42}{5} \underline{\text{oe}}}$	M1 A1	(2)
(e)	$X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ " + $\frac{1}{5}$	M1 A1ft	
	$=\frac{9}{20}$ oe	A1	(3)
		Total	11
(a)	M1for a clear attempt to use $\sum P(X = x) = 1$ Correct answer only 2/2. NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.		
(b)	B1 for 1		
(c)	1 st M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through. 2^{nd} M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ incorrect formula seen. Correct answer only 3/3.) provided no	,
(d)	M1 for $(-2)^2 \operatorname{Var}(X)$ or $4\operatorname{Var}(X)$ Condone missing brackets provided final answer correct for their $\operatorname{Var}(X)$. Correct answer only $2/2$.		
(e)	Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$ M1 for identifying $X = 2$, 3 1^{st} A1ft for attempting to find their $P(X=2) + P(X=3)$ 2^{nd} A1 for $\frac{9}{20}$ or 0.45		

Question Number	Scheme	Marks	
Q4 (a)	$\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6} (** \text{ given answer**})$	M1 A1cso	(2)
(b)	$\frac{4+2+5+3}{\text{total}}$, $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$	M1 A1	(2)
(c)	$P(A \cap C) = 0$	B1	(1)
(d)	$P(C \text{ reads at least one magazine}) = \frac{6+3}{20} = \frac{9}{20}$	M1 A1	(2)
(e)	$P(B) = \frac{10}{30} = \frac{1}{3}, \ P(C) = \frac{9}{30} = \frac{3}{10}, \ P(B \cap C) = \frac{3}{30} = \frac{1}{10} \ \text{or} \ P(B C) = \frac{3}{9}$	M1	
	$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$	M1	
	So yes they are statistically independent	A1cso	(3)
		Tota	I 10
(a)	M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$		
(b)	M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule		
(c)	B1 for 0 or 0/30		
(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20		
	$\frac{9}{20}$ only, 2/2		
(e)	 1st M1 for attempting all the required probabilities for a suitable test 2nd M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment 		

Quest Numb		Scheme	Marks	
Q5	(a)	23, 35.5 (may be in the table)	B1 B1	(2)
	(b)	Width of 10 units is 4 cm so width of 5 units is 2 cm	B1	
		Height = $2.6 \times 4 = 10.4 \text{ cm}$	M1 A1	(3)
	(c)	$\sum fx = 1316.5 \Rightarrow \bar{x} = \frac{1316.5}{56} = \text{awrt } \underline{23.5}$	M1 A1	
		$\sum fx^2 = 37378.25 \text{ can be implied}$	B1	
		So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt} \underline{10.7}$ allow $s = 10.8$	M1 A1	(5)
	(d)	$Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>	M1 A1	(2)
	(e)	$Q_3 - Q_2 = 5.6$, $Q_2 - Q_1 = 7.9$ (or $\overline{x} < Q_2$)	M1	
		[7.9 > 5.6 so] <u>negative skew</u>	A1	(2)
			Tota	
	(b)	M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.	I	
	(c)	1^{st} M1 for reasonable attempt at $\sum x$ and /56		
		2^{nd} M1 for a method for σ or s , $\sqrt{}$ is required		
		Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}$, $\sum f^2 x = 13922.5 \text{ M0}$ and $(\sum fx)^2 = 1733172 \text{ Correct answers only, award full marks.}$	MO	
	(d)	Use of $\sum f(x-\bar{x})^2 = \text{awrt } 6428.75 \text{ for B1}$		
		lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct for 28.5 in fraction that gives awrt 23.9 for M1A1	M1 - Allo	w
	(e)	M1for attempting a test for skewness using quartiles or mean and median. Provided median greater than 22.55 and less than 29.3 award for M1 for $Q_3 - Q_2 < Q_2 - Q_3$	without va	alues
		as a valid reason. SC Accept mean close to median and no skew oe for M1A1	•	

Quest Numb		Scheme	Marks
Q6	(a)	See overlay	B1 B1 (2)
	(b)	The points lie reasonably close to a straight line (o.e.)	B1 (1)
	(c)	$\sum d = 27.7, \qquad \sum f = 146 $ (both, may be implied)	B1
		$\sum d = 27.7, \qquad \sum f = 146$ (both, may be implied) $S_{dd} = 152.09 - \frac{(27.7)^2}{6} = 24.208$ awrt <u>24.2</u> $S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$ awrt <u>49.1</u>	M1 A1
			A1 (4)
	(d)	$b = \frac{S_{fd}}{S_{dd}} = 2.026$ awrt 2.03	M1 A1
		$b = \frac{S_{fd}}{S_{dd}} = 2.026$ awrt 2.03 $a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so $\underline{f} = 15.0 + 2.03d$	M1 A1 (4)
	(e)	A flight costs £2.03 (or about £2) for every extra 100km or about 2p per km.	B1ft (1)
	(f)	$15.0 + 2.03d < 5d \qquad \text{so} d > \frac{15.0}{(5 - 2.03)} = 5.00 \sim 5.05$	M1
		So $t > 500 \sim 505$	A1 (2)
			Total 14
	(a)	1 st B1 for at least 4 points correct (allow <u>+</u> one 2mm square) 2 nd B1 for all points correct (allow <u>+</u> one 2 mm square	
	(b)	Ignore extra points and lines Require reference to points and line for B1.	
	(c)	M1 for a correct method seen for either - a correct expression 1^{st} A1 for S_{dd} awrt 24.2	
		2^{nd} A1 for S_{fd} awrt 49.1	
	(d)	1^{st} M1 for a correct expression for b - can follow through their answers from (c) 2^{nd} M1 for a correct method to find a - follow through their b and their means 2^{nd} A1 for f = in terms of d and all values awrt given expressions. Accept 15 as roun answer only.	nding from correct
	(e)	Context of cost and distance required. Follow through their value of <i>b</i>	
	(f)	M1 for an attempt to find the intersection of the 2 lines. Value of <i>t</i> in range 500 to 505 s Value of <i>d</i> in range 5 to 5.05 award M1. Accept <i>t</i> greater than 500 to 505 inclusive to include graphical solution for M 1A1	seen award M1.

Question Number	Scheme	Marks
Q7 (a)	$P(D > 20) = P\left(Z > \frac{20 - 30}{8}\right)$	M1
	= P(Z > -1.25)	A1
	= <u>0.8944</u> <u>awrt 0.894</u>	A1 (3)
(b)	$P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$	M1 B1
	$Q_3 = \text{awrt } 35.4$	A1 (3)
(c)	$35.4 - 30 = 5.4$ so $Q_1 = 30 - 5.4 = $ awrt 24.6	B1ft (1)
(d)	$Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$	M1
	h = 8.4 to 8.6 and $k = 51.4 to 51.6$ both	A1 (2)
(e)	2P(D > 51.6) = 2P(Z > 2.7)	M1
	$= 2[1 - 0.9965] = \text{awrt } \underline{0.007}$	M1 A1 (3)
		Total 12
(a)	M1 for an attempt to standardise 20 or 40 using 30 and 8. 1^{st} A1 for $z = \pm 1.25$ 2^{nd} A1 for awrt 0.894	
(b)	M1 for $\frac{Q_3 - 30}{8}$ = to a z value M0 for 0.7734 on RHS. B1 for (z value) between 0.67~0.675 seen. M1B0A1 for use of z = 0.68 in correct expression with awrt 35.4	
(c)	Follow through using their of quartile values.	
(d)	M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of the in the question - follow through their quartiles	formulae given
(e)	1^{st} M1 for attempting $2P(D > \text{their } k)$ or ($P(D > \text{their } k) + P(D < \text{their } h)$) 2^{nd} M1 for standardising their h or k (may have missed the 2) so allow for standardising $P(D > 51.6)$ or $P(D < 8.4)$ Require boths Ms to award A mark.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA024765 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH