CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	42

Section A

1	(a)	equatorial orbit / above equator satellite moves from west to east / same direction as Earth spins period is 24 hours / same period as spinning of Earth (allow 1 mark for 'appears to be stationary/overhead' if none of above marks scored	B1 B1 B1 d)	[3]
	(b)	gravitational force provides/is the centripetal force $GMm/R^2 = mR\omega^2$ or $GMm/R^2 = mv^2/R$ $\omega = 2\pi / T$ or $v = 2\pi R / T$ or clear substitution clear working to give $R^3 = (GMT^2 / 4\pi^2)$	B1 M1 M1 A1	[4]
	(c)	$\begin{aligned} R^3 &= 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2 \\ &= 7.57 \times 10^{22} \\ R &= 4.2 \times 10^7 \text{ m} \\ (missing \ out \ 3600 \ gives \ 1.8 \times 10^5 \ m \ and \ scores \ 2/3 \ marks) \end{aligned}$	C1 C1 A1	[3]
2	(a)	(i) 1. $pV = nRT$ $1.80 \times 10^{-3} \times 2.60 \times 105 = n \times 8.31 \times 297$ n = 0.19 mol 2. $\Delta q = mc\Delta T$	C1 A1	[2]
		95.0 = 0.190 × 12.5 × ΔT ΔT = 40 K (allow 2 marks for correct answer with clear logic shown)	B1 A1	[2]
		(ii) $p/T = \text{constant}$ (2.6 × 10 ⁵) / 297 = p / (297 + 40) $p = 2.95 \times 10^5 \text{ Pa}$	M1 A0	[1]
	(b)	change in internal energy is 120 J / 25 J internal energy decreases / ΔU is negative / kinetic energy of molecules decreases so temperature lower	B1 M1 A1	[3]

群尧咨询

	Page 3	Mark Scheme Syllabus	Paper	-
	rayet	GCE AS/A LEVEL – May/June 2013 9702	42	
3	(a) (i)	$\omega = 2\pi / T$ = $2\pi / 0.69$ = 9.1 rad s ⁻¹ (allow use of $f = 1.5$ Hz to give $\omega = 9.4$ rad s ⁻¹)	C1 A1	[2]
	(ii)	1. $x = 2.1 \cos 9.1t$ 2.1 and 9.1 numerical values use of cos	B1 B1	[2]
		2. $v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s ⁻¹ $v = v_0 \sin 9.1t$ (allow $\cos 9.1t$ if $\sin used in (ii)1$.)	B1 B1	[2]
	(b) ene	ergy = either $\frac{1}{2} m v_0^2$ or $\frac{1}{2} m \omega^2 x_0^2$ = either $\frac{1}{2} \times 0.078 \times 0.19^2$ or $\frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^{-2})^2$ = 1.4×10^{-3} J	C1 A1	[2]
4	(a) (i)	$V = q / 4\pi \varepsilon_0 R$	B1	[1]
	(ii)	(capacitance is) ratio of charge and potential or q/V $C = q/V = 4\pi\epsilon_0 R$	M1 A0	[1]
	(b) (i)	$C = 4\pi \times 8.85 \times 10^{-12} \times 0.45$ = 50 pF	C1 A1	[2]
	(ii)	either energy = $\frac{1}{2} CV^2$ or energy = $\frac{1}{2} QV$ and $Q = CV$ energy of spark = $\frac{1}{2} \times 50 \times 10^{-12} \{(9.0 \times 10^5)^2 - (3.6 \times 10^5)^2\}$ = 17 J	C1 C1 A1	[3]
5		iform magnetic) flux normal to long (straight) wire carrying a current of 1 A eates) force per unit length of 1 N m ⁻¹	M1 A1	[2]
	(b) (i)	sketch: concentric circles increasing separation <i>(must show more than 3 circles)</i> correct direction (anticlockwise, looking down)	M1 A1 B1	[3]
	(ii)	B = $(4\pi \times 10^{-7} \times 6.3) / (2\pi \times 4.5 \times 10^{-2})$ = 2.8×10^{-5} T	C1 A1	[2]
	(iii)	$F = BIL (\sin \theta) = 2.8 \times 10^{-5} \times 9.3 \times 1 F/L = 2.6 \times 10^{-4} \text{ Nm}^{-1}$	C1 A1	[2]
	rea	ce per unit length depends on product $I_X I_Y$ / by Newton's third law / action and ction are equal and opposite same for both	M1 A1	[2]

群尧咨询

	Pa	ge 4	•	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	42	
6	(a)) e.m.f. <u>proportional to rate</u> e of (magnetic) flux (linkage)		M1 A1	[2]
	(b)	(i)	posi	tive terminal identified (upper connection to load)		B1	[1]
		(ii)	ratio (V _P = (<i>ratio</i>	$\sqrt{2} \times V_{\text{RMS}}$ = 240 $\sqrt{2}$ / 9 = 38 = V_{RMS} / $\sqrt{2}$ gives ratio = 18.9 and scores 1/3) p = 240 / 9 = 26.7 scores 1/3) = - 0.0265 is inverted actioned actions and scores 1/4	2)	C1 C1 A1	[3]
	(c)	(i)	è.g.	$p = 9 / (240 / \sqrt{2}) = 0.0265$ is inverted ratio and scores 1/2 (output) p.d. / voltage / current does not fall to zero range of (output) p.d. / voltage / current is reduced (any	,) B1	[1]
		(ii)	sket	ch: same peak value at start of discharge correct shape between one peak and the next		M1 A1	[2]
7	(a)			velength is associated with a discrete <u>change</u> in energy energy <u>change</u> / difference implies discrete levels		M1 A1	[2]
	(b)	(i)	1.	arrow from –0.54 eV to –0.85 eV, labelled L		B1	[1]
				arrow from –0.54 eV to –3.4 eV , labelled S (two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark)		B1	[1]
		(ii)		hc / λ - 0.54) × 1.6 × 10 ⁻¹⁹ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / λ 4.35 × 10 ⁻⁷ m		C1 C1 A1	[3]
	(c)	-0. -0. 3 c	$85 \rightarrow 54 \rightarrow orrect$	-3.4 = 1.9 eV -3.4 = 2.55 eV (allow 2.6 eV) -3.4 = 2.86 eV (allow 2.9 eV) , 2 marks with -1 mark for each additional energy			
		2 c	orrect	, 1 mark but no marks if any additional energy difference	28	B2	[2]

Page 5	5	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	42	
eith	ner E =	a given out / released on formation of the α-particle (or r = mc^2 so mass is less rence to mass-energy equivalence	everse argume	ent) M1 A1	[2]
(b) (i)	mass	s change = 18.00567 u – 18.00641 u = 7.4 × 10 ⁻⁴ u <i>(sign not required)</i>		C1 A1	[2]
(ii)	(allo	gy = $c^2 \Delta m$ = $(3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$ = 1.1×10^{-13} J w use of u = 1.67×10^{-27} kg) w method based on 1u equivalent to 930 MeV to 933 M	eV)	C1 A1	[2]
(iii)	eithe or	er mass of products greater than mass of reactants this mass/energy provided as kinetic energy of the he both nuclei positively charged energy required to overcome electrostatic repulsion	elium-4 nucleus	M1 s A1 (M1) (A1)	[2]

Page 6		•	Mark Scheme	Syllabus	Donor		
				GCE AS/A LEVEL – May/June 2013	Syllabus 9702	Paper 42	
				Section B	·		
((a)	30	litres	\rightarrow 54 litres (allow ± 4 litres on both limits)		A1	[
((b)	(i)		0.1 V change in reading for 10 litre consumption (or since about 60 litres gradient is small compared to the gradient is small compared to		B1) litres B1	[
		(ii)	volt	meter reading (nearly) zero when fuel is left meter reads only about 0.1 V when 10 litres of fuel left i Itmeter reads zero when about 4 litres of fuel left in tan		C1 A1	[
((a)			of density and speed of sound / wave of medium and) speed of sound / wave in medium		M1 A1	[
((b)		$Z_1 - Z_2$	Z_2) is small, mostly transmission Z_2) is large, mostly reflection <i>(if 'mostly' not stated allow 1/2 marks for these first</i> reflection / transmission also depends on $(Z_1 + Z_2)$,	M1 M1	
((c)	-		intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$ aller structures can be distinguished better resolution at shorter wavelength / higher freque		A1 B1 B1	[
((a)		-	g voltage changes energy / speed of <u>electrons</u> g electron energy changes maximum X-ray photon ene	rgy	M1 A1	
((b)	(i)	1.	loss of power / energy / intensity		B1	
			2.	intensity changes when beam not parallel decreases when beam is divergent		C1 A1	I
		(ii)		$p = (exp \{-2.9 \times 2.5\}) / (exp \{-0.95 \times 6.0\})$ = 0.21 (min. 2 sig. fig.) ues of both lengths incorrect by factor of 10 ⁻² to give ra	tio of 0.985 score	C1 A1 es 1 mark)

	Page 7			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	42	
12	(a)			the simultaneous digits for one number ds' them one after another (along the transmission line)		B1 B1	[2]
	(b)	(i)	0111	I		A1	[1]
		(ii)	0110)		A1	[1]
	(c)	leve	ls sh	own			

t	0	0.2	0.4	0.6	0.8	1.0	1.2
	0	8	7	15	6	5	8

(–1 for each error or omission)	A2	
correct basic shape of graph i.e. series of steps	M1	
with levels staying constant during correct time intervals (vertical lines in steps do not need to be shown)	A1	[4]
(Ventical lines in steps do not need to be shown)		

(d)	increasing number of bits reduces step height	M1	
	increasing sampling frequency reduces step depth / width	M1	
	reproduction of signal is more exact	A1	[3]