Mark Scheme 4721 June 2007

1	$(4x^{2} + 20x + 25) - (x^{2} - 6x + 9)$ $= 3x^{2} + 26x + 16$	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$
		A1		One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: (2x + 5 + (x - 3))(2x + 5 - (x - 3)) = $(3x + 2)(x + 8)$ = $3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
(")	\			SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(ii)		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
			5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ $\times\sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90}$ $\times\sqrt{2}$	M1		
	$=6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4 (i)	$\begin{aligned} &(-4)^2 - 4 \times k \times k \\ &= 16 - 4k^2 \end{aligned}$	M1 A1	2	Uses $b^2 - 4ac$ (involving k) 16 - 4 k^2
(ii)	$16-4k^2=0$	M1		Attempts $b^2 - 4ac = 0$ (involving k) or
	$k^2 = 4$			attempts to complete square (involving <i>k</i>)
	k = 2	B1		ry
	or $k = -2$	B1	3	
			5	
5 (i)	Length = 20 - 2x	M1	<u> </u>	Expression for length of enclosure in
				terms of x
		A1	2	Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$			AG
	$=20x-2x^2$			
(ii)	$\underline{dA} = 20 - 4x$	M1		Differentiates area expression
	dx			
	For max, $20 - 4x = 0$,
	x = 5 only	M1		Uses $\frac{dy}{dx} = 0$
	Area = 50	A1		dx
	71104 = 00	A1	4	
			6	
6	Let $y = (x + 2)^2$	B1	•	Substitute for (x + 2) ² to get
	$y^2 + 5y - 6 = 0$			$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0	M1		Correct method to find roots
	y = -6 or y = 1	A1		Both values for y correct
	y = -0 01 y = 1	M1		Attempt to work out x
	$(x + 2)^2 = 1$	A1		One correct value
	x = -1	A1	6	Second correct value and no extra real
	or $x = -3$		6	values
7 (a)	$f(x) = x + 3x^{-1}$	M1		Attempt to differentiate
	$f(x) = x + 3x^{1}$ $f'(x) = 1 - 3x^{2}$	A1		First term correct
	(^) - 1			
		A1		x ² soi www
		A1	4	Fully correct answer
(b)	$\frac{1}{2}$ dy $\frac{3}{2}$	M1		Use of differentiation to find gradient
	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$			_
	$\begin{vmatrix} ax & z \end{vmatrix}$	B1		$\frac{5}{2}x^{c}$
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	dx = 2 $= 20$	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

8 (i)	$(x + 4)^{2} - 16 + 15$ $= (x + 4)^{2} - 1$	B1 M1 A1 3	a = 4 15 – their a^2 cao in required form
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
(iii)	$x^2 + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4	x < -5, x > -3 (not wrapped, strict inequalities, no 'and')
9 (i)	$(x-3)^2 - 9 + y^2 - k = 0$ (x-3) ² + y ² = 9 + k	B1	$(x-3)^2$ soi
	$(x-3)^2 + y^2 = 9 + k$ Centre (3, 0)	B1	Correct centre
	$9 + k = 4^2$	M1	Correct value for <i>k</i> (may be
	k = 7	A1 4	embedded)
			Alternative method using expanded form: Centre (-g, -f) Centre (3, 0) $4 = \sqrt{f^2 + g^2 - (-k)}$ M1 $k = 7$ M1 A1
(ii)	$(3-3)^2 + y^2 = 16$ $y^2 = 16$	M1	Attempt to substitute x = 3 into
	$y^2 = 16$ $y = 4$	A1	original equation or their equation $y = 4$ (do not allow ± 4)
	Length of AB = $\sqrt{(-1-3)^2 + (0-4)^2}$	M1	Correct method to find line length using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$=4\sqrt{2}$	A1 5	cao
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x – 3)	A1 3	through their A or B with their gradient Correct equation in any form with
	y = x + 1	12	simplified constants

10 (i)	(3x + 1)(x - 5) = 0 $x = \frac{-1}{3}$ or $x = 5$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
			SR B1 for x = 5 spotted www
(ii)	\	B1	Positive quadratic (must be reasonably symmetrical)
		B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 $x = 3$	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method: $3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0 \text{ has one solution}$	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32