更多咨询请登录

www.qyconsult.com

群尧咨询

	シシロ尚明立 永			다. 다. 다. 다. 다. 다. 다. 다. 다. 다. 다. 다. 다. 다
4721		Mark Scheme		June 2010
1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1		$\frac{1}{9^{\frac{1}{2}}} \text{ or } \frac{1}{\sqrt{9}} \text{ soi}$
		A1	2 3	cao
2 (i)	У	B1*		Reasonably correct curve for $y = -\frac{1}{r^2}$ in
		x		3^{rd} and 4^{th} quadrants only
		B1 dep*	2	Very good curves in curve for $y = -\frac{1}{x^2}$ in
		чэр		3 rd and 4 th quadrants
				SC If 0, very good single curve in either 3 rd or 4 th quadrant and nothing in other three quadrants. B1
(ii)	<i>y</i>			
		M1		Translation of their $y = -\frac{1}{x^2}$ vertically
		→ <i>x</i> A1	2	Reasonably correct curve, horizontal asymptote soi at $y = 3$
(iii)	$y = -\frac{2}{2}$	B1	1	
	<i>x</i> ²		5	
3 (i)	$\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$	M1		Multiply numerator and denom by $3 - \sqrt{5}$
	$=\frac{12(3-\sqrt{5})}{9-5}$	A1		$(3+\sqrt{5})(3-\sqrt{5}) = 9-5$
	$=9-3\sqrt{5}$	A1	3	
(ii)	$3\sqrt{2}-\sqrt{2}$	M1		Attempt to express $\sqrt{18}$ as $k\sqrt{2}$
	$=2\sqrt{2}$	A1	2 5	

更多咨询请登录

www.qyconsult.com

群尧咨询

4721 Mark Scheme June 2010 $(x^2 - 4x + 4)(x + 1)$ **M1** 4 (i) Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term) A1 Expansion with at most 1 incorrect term $=x^{3}-3x^{2}+4$ A1 3 Correct, simplified answer y, (ii) +ve cubic with 2 or 3 roots **B1** Intercept of curve labelled (0, 4) or **B1** indicated on y-axis 2 **B1** 3 (-1, 0) and turning point at (2, 0) labelled or indicated on x-axis and no other x intercepts 6 M1* Use a substitution to obtain a quadratic or $k = x^2$ 5 factorise into 2 brackets each containing x^2 $4k^{2} + 3k - 1 = 0$ Correct method to solve a quadratic **M1** (4k-1)(k+1) = 0dep $k = \frac{1}{4}$ (or k = -1) A1 Attempt to square root to obtain x $x = \pm \frac{1}{2}$ M1 $\pm \frac{1}{2}$ and no other values A1 5 5 $y = 2x + 6x^{-\frac{1}{2}}$ **M1** Attempt to differentiate 6 $kx^{-\frac{3}{2}}$ A1 $\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$ Completely correct expression (no + c)A1 Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$ When x = 4, gradient = $2 - \frac{3}{\sqrt{4^3}}$ **M1** $=\frac{13}{8}$ A1 5 5 $2(6-2y)^2 + y^2 = 57$ 7 M1* substitute for x/y or attempt to get an equation in 1 variable only A1 correct unsimplified expression $2(36-24y+4y^2)+y^2=57$ $9v^2 - 48v + 15 = 0$ obtain correct 3 term quadratic A1 $3y^2 - 16y + 5 = 0$ correct method to solve 3 term quadratic **M1** (3y-1)(y-5) = 0dep $y = \frac{1}{3}$ or y = 5A1 $x = \frac{16}{3}$ or x = -4A1 SC If A0 A0, one correct pair of values, 6

6

spotted or from correct factorisation www B1 4721

Mark Scheme

8 (i)	$2(x^2 + \frac{5}{2}x)$			$(5)^2$
		B1		$\left(x+\frac{5}{4}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$q = -2p^2$
	$=2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
		B1√		
(ii)	$\left(-\frac{5}{4},-\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
		A1		0, $-\frac{5}{2}$ seen
	$x < -\frac{5}{2}, x > 0$	M1		Correct method to solve quadratic
	2	A1	4	inequality. (not wrapped, strict inequalities, no 'and')
	4		10	
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6	A1	2	
	q = 1	A1	3	
(ii)	$r^{2} = (4-^{-}1)^{2} + (5-3)^{2}$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x+1)^2$ and $(y-3)^2$ seen
(111)		M1		$(x \pm 1)^2 + (y \pm 3)^2 = \text{their } r^2$
	$x^2 + y^2 + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent = $-\frac{5}{2}$	B 1√		oe
	$y-5 = -\frac{5}{2}(x-4)$	M1		correct equation of straight line through (4,
	_			5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

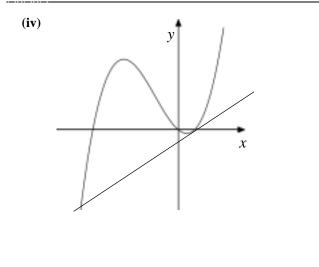
更多咨询请登录

www.qyconsult.com

Mark Scheme

June 2010

4721


10(i) $\frac{dy}{dx} = 6x^2 + 10x - 4$ $6x^2 + 10x - 4 = 0$ $2(3x^2 + 5x - 2) = 0$ (3x - 1)(x + 2) = 0 $x = \frac{1}{3}$ or x = -2 $y = -\frac{19}{27}$ or y = 12

(ii)	$-2 < x < \frac{1}{3}$	
---------------	------------------------	--

(iii) When
$$x = \frac{1}{2}$$
, $6x^2 + 10x - 4 = \frac{5}{2}$
and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$
 $y + \frac{1}{2} = \frac{5}{2}(x - \frac{1}{2})$

$$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$$

$$10x - 4y - 7 = 0$$

B1 B1		1 term correct Completely correct (no +c)
M1*		Sets their $\frac{dy}{dx} = 0$
M1 dep*		Correct method to solve quadratic
A1		SC If A0 A0, one correct pair of values, spotted or from correct factorisation www
A1	6	B1
M1		Any inequality (or inequalities) involving
A1	2	both their x values from part (i) Allow \leq and \geq
M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
B1		Correct y coordinate
M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the
		negative reciprocal
A1	4	Shows rearrangement to given equation CWO throughout for A1
B1		Sketch of a cubic with a tangent which meets it at 2 points only
B1	2 14	+ve cubic with max/min points and line with +ve gradient as tangent to the curve to the right of the min
		SC1 B1 Convincing algebra to show that the cubic $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x - 1)(2x - 1)(x + 7) B1 Correct argument to say there are 2 distinct roots SC2 B1 Recognising y = 2.5x -7/4 is tangent from part (iii) B1 As second B1 on main scheme