CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	43

Section A

1	(a)	region of space area / volume where a mass experiences a force			
	, ,				[2]
	(b)	(i)	force proportional to product of two masses force inversely proportional to the square of their separation <i>either</i> reference to point masses <i>or</i> separation >> 'size' of masses	M1 M1 A1	[3]
		(ii)	field strength = GM/x^2 or field strength $\propto 1/x^2$ ratio = $(7.78 \times 10^8)^2/(1.5 \times 10^8)^2$ = 27	C1 C1 A1	[3]
	(c)	(i)	either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ or centripetal force = mv^2 / R and $v = 2\pi R / T$ gravitational force provides the centripetal force either $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $M = 4\pi^2 R^3 / GT^2$ (allow working to be given in terms of acceleration)	B1 B1 M1 A0	[3]
		(ii)	$M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ = 2.0 \times 10 ³⁰ kg	C1 A1	[2]
2	(a)	p, \	eys the equation pV = constant \times T or pV = nRT / and T explained all values of p , V and T /fixed mass/ n is constant	M1 A1 A1	[3]
	(b)	(i)	$3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ n = 0.34 mol	M1 A0	[1]
		(ii)	for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ $T = 360 \text{K}$	C1 A1	[2]
	(c)	gas wor	en tap opened s passed (from cylinder B) to cylinder A ck done on gas in cylinder A (and no heating)	B1 M1	[2]

Α1

[3]

so internal energy and hence temperature increase

	Pa	ge 3	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	43	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36 cm frequency = 1/0.36 = 2.8 Hz		C1 A1	[2]
			$(-)\omega^2 x$ and $\omega = 2\pi/T$ eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s^{-2}}$		C1 M1 A0	[2]
	(b)		straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)		M1 A1	[2]
	(c)	or $\frac{1}{2}m\omega^{2}(x)$ $x_{0}^{2} = 2x^{2}$	kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kinetion $(x_0 - x^2) = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ $\sqrt{2} = 1.7 / \sqrt{2}$	c energy	B1 C1	
		= 1.20			A1	[3]
4	(a)		ne moving unit positive charge inity (to the point)		M1 A1	[2]
	(b)		kinetic energy = change in potential energy qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^{7})$ $v = 3.0 \times 10^{5} \mathrm{m s^{-1}}$ this is greater than $2.5 \times 10^{5} \mathrm{m s^{-1}}$ and so 'no'		(C1) (M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \text{C kg}^{-1}$ this is less than $9.58 \times 10^7 \text{C kg}^{-1}$ and so 'no'		(C1) (M1) (A1)	

Page 4		1	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013 9702		43	
(a)	(uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A (creates) force per unit length of $1\mathrm{N}\mathrm{m}^{-1}$					[
(b)	(i)	flux	density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = 6.6×10^{-3} T		C1 A1	I
	(ii)	flux	linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	ļ
(c)	(i)		uced) e.m.f. proportional to rate of nge of (magnetic) flux (linkage)		M1 A1	I
	(ii)	e.m.	f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = $7.4 \times 10^{-3} \text{ V}$		C1 A1	I
(a)	(i)		educe power loss in the core to eddy currents/induced currents		B1 B1	
	(ii)	eithe or	er no power loss in transformer input power = output power		B1	
(b)	eith		r.m.s. voltage across load = $9.0 \times (8100 / 300)$ peak voltage across load = $\sqrt{2} \times 243$ = 340 V		C1 A1	
	or		peak voltage across primary coil = $9.0 \times \sqrt{2}$ peak voltage across load = $12.7 \times (8100/300)$ = 340 V		(C1) (A1)	•
(a)	(i)		est frequency of e.m. radiation ng rise to emission of electrons (from the surface)		M1 A1	
	(ii)	E = thre	hf shold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = $1.4 \times 10^{15} \text{ Hz}$		C1 A1	l
(b)	or or		$300 \text{nm} \equiv 10 \times 10^{15} \text{Hz}$ (and $600 \text{nm} \equiv 5.0 \times 10^{14} \text{Hz}$) $300 \text{nm} \equiv 6.6 \times 10^{-19} \text{J}$ (and $600 \text{nm} \equiv 3.3 \times 10^{-19} \text{J}$) zinc $\lambda_0 = 340 \text{nm}$, platinum $\lambda_0 = 220 \text{nm}$ (and sodium $\lambda_0 = 10 \text{mm}$) from sodium and zinc	520 nm)	M1 A1	
(c)		•	oton has larger energy		M1	

M1

Α1

[3]

fewer photons per unit time

fewer electrons emitted per unit time

	Page 5		5	Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – May/June 2013	9702	43	
8	(a)			nuclei combine ore massive nucleus		M1 A1	[2]
	(b)	(i)	Δm energy	= $(2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = $5.33 \times 10^{-3} \text{ u}$ = $c^2 \times \Delta m$		C1 C1	
			oo.g,	= $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^{8})^{2}$ = 8.0×10^{-13} J		A1	[3]
		(ii)		kinetic energy of proton and deuterium must be very the nuclei can overcome electrostatic repulsion	large	B1 B1	[2]
				Section B			
9	(a)	(i)	light-de	ependent resistor/LDR		B1	[1]
		(ii)	strain g	gauge		B1	[1]
		(iii)	quartz/	piezo-electric crystal		B1	[1]
	(b)	(i)		nce of thermistor decreases as temperature increses		M1	
			etiher or V _{OUT} in	$V_{\text{OUT}} = V \times R / (R + R_{\text{T}})$ current increases and $V_{\text{OUT}} = IR$ creases		A1 A1	[3]
		(ii)	either or so cha	change in $R_{\rm T}$ with temperature is non-linear $V_{\rm OUT}$ is not proportional to $R_{\rm T}/$ change in $V_{\rm OUT}$ with $P_{\rm T}$	$R_{\!\scriptscriptstyle op}$ is non-linear	M1 A1	[2]
10	(a)		•	how well the edges (of structures) are defined fference in (degree of) blackening between structures	3	B1 B1	[2]
	(b)	e.g	large p	ing of photos in tissue/no use of a collimator/no use of enumbra on shadow/large area anode/wide beam ixel size	of lead grid		
			• .	vo sensible suggestions, 1 each)		B2	[2]
	(c)	(i)		$= \exp(-2.85 \times 3.5) / \exp(-0.95 \times 8.0)$ = $(4.65 \times 10^{-5}) / (5.00 \times 10^{-4})$		C1 C1	
				: 0.093		A1	[3]
		(ii)	either or so goo	large difference (in intensities) ratio much less than 1.0 d contrast		M1 A1	[2]

(answer given in (c)(ii) must be consistent with ratio given in (c)(i))

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	43

11	(a)	a) (i) amplitude of the carrier wave varies (in synchrony) with the displacement of the information signal				[2]
		(ii)	enables shorter aerial	ation can operate in same region/less interference ower required/less attenuation vers, 1 each)	B2	[2]
	(b)	(i)	frequency = 909 kHz wavelength = $(3.0 \times 10^8) / (3.0 \times 10^8)$	(909×10^3)	C1	
			= 330 m		A1	[2]
		(ii)	bandwidth = 18 kHz		A1	[1]
	((iii)	frequency = 9000 Hz		A1	[1]
12	(a)		received signal, $28 = 10 \lg(P 2.3 \times 10^{-4} \text{ W})$	/ {0.36 × 10 ⁻⁶ })	C1 A1	[2]
	(b)	loss	s in fibre = $10 \lg({9.8 \times 10^{-3}})$ = $16 dB$	/ {2.27 × 10 ⁻⁴ })	C1 A1	[2]
	(c)	atte		16 / 85 0.19 dB km ⁻¹	A1	[1]