GCE

Edexcel GCE
Mathematics
Core Mathematics C1 (6663)

J une 2006

Mark Scheme (Results)

J une 2006
6663 Core Mathematics C1
Mark Scheme

Question number	Scheme	Marks
1.	$\frac{6 x^{3}}{3}+2 x+\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \quad(+c)$ $=2 x^{3}+2 x+2 x^{\frac{1}{2}}$	M1 A1 A1 B1
	M1 for some attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1 \quad$ for either $\frac{6}{3} x^{3}$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better $2^{\text {nd }}$ A1 for all terms in x correct. Allow $2 \sqrt{x}$ and $2 x^{1}$. B1 for $+c$, when first seen with a changed expression.	

Question number	Scheme	Marks
2.	Critical Values $(x \pm a)(x \pm b)$ with $a b=18$ or $x=\frac{7 \pm \sqrt{49--72}}{2}$ or $\left(x-\frac{7}{2}\right)^{2} \pm\left(\frac{7}{2}\right)^{2}-18$ $(x-9)(x+2) \quad$ or $\quad x=\frac{7 \pm 11}{2} \quad$ or $\quad x=\frac{7}{2} \pm \frac{11}{2}$ Solving Inequality $\quad x>9$ or $x<-2 \quad$ Choosing "outside"	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\left.\begin{array}{ll}1^{\text {st }} \text { M1 } & \begin{array}{l}\text { For attempting to find critical values. } \\ \text { Factors alone are OK for M1, } x=\text { appearing somewhere for the fo } \\ \text { written for completing the square }\end{array} \\ 1^{\text {st }} \text { A1. } & \text { Factors alone are OK. Formula or completing the square need } x\end{array}\right\}$For choosing outside region. Can f.t. their critical values. They must have two different critical values.	ula and as as written.

Question number	Scheme	Marks
3.	(a) U shape touching x-axis $\begin{aligned} & (-3,0) \\ & (0,9) \end{aligned}$ (b) Translated parallel to y-axis up $(0,9+k)$	B1 B1 B1 (3) M1 B1f.t. (2)
(a) (b)	$2^{\text {nd }} \mathrm{B} 1$ They can score this even if other intersections with the x-axis are given. $2^{\text {nd }} \mathrm{B} 1 \& 3^{\text {rd }} \mathrm{B} 1$ The -3 and 9 can appear on the sketch as shown M1 Follow their curve in (a) up only. If it is not obvious do not give it. e.g. if it cuts y-axis in (a) but doesn't in (b) then it is M0. B1f.t. Follow through their 9	

Question number	Scheme	Marks
4. (a) (b)	$\begin{aligned} & a_{2}=4 \\ & a_{3}=3 \times a_{2}-5=7 \\ & a_{4}=3 a_{3}-5(=16) \text { and } a_{5}=3 a_{4}-5(=43) \\ & 3+4+7+16+43 \\ & =73 \end{aligned}$	B1 B1f.t. M1 M1 A1c.a.o. $\mathbf{5}$
(a) (b)		

Question number	Scheme	Marks
6. (a) (b)	$\begin{aligned} & 16+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2} \text { or } 16-3 \\ & =13 \\ & \frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}} \end{aligned}$ $=\frac{26(4-\sqrt{3})}{13}=\underline{8-2 \sqrt{3}} \quad$ or $\quad 8+(-2) \sqrt{3} \quad$ or $\quad a=8$ and $b=-2$	M1 A1c.a.o M1 A1 (2) 4
(a) (b)	For 4 terms, at least 3 correct e.g. $8+4 \sqrt{3}-4 \sqrt{3}-(\sqrt{3})^{2}$ or $16 \pm 8 \sqrt{3}-(\sqrt{3})^{2}$ or $16+3$ 4^{2} instead of 16 is OK $(4+\sqrt{3})(4+\sqrt{3})$ scores M0A0 M1 For a correct attempt to rationalise the denominator Can be implied NB $\frac{-4+\sqrt{3}}{-4+\sqrt{3}}$ is OK	

Question number	Scheme ${ }^{\text {a }}$ Marks
7.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
8. (a) \\
(b)
\end{tabular} \& \[
\begin{array}{l|l}
b^{2}-4 a c=4 p^{2}-4(3 p+4)=4 p^{2}-12 p-16(=0) \\
\text { or } \begin{array}{l}
(x+p)^{2}-p^{2}+(3 p+4)=0 \Rightarrow p^{2}-3 p-4(=0)
\end{array} \\
\qquad \begin{aligned}
(p-4)(p+1)=0 \\
p=(-1 \text { or }) 4
\end{aligned} \& \text { M1, A1 } \\
x=\frac{-b}{2 a} \text { or }(x+p)(x+p)=0 \Rightarrow x=\ldots \\
x(=-p)=\underline{-4} \& \text { A1c.s.o. (4) } \\
\& \text { M1 } \\
\end{array}
\] \\
\hline (a)

(b) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 9. (a)
(b)
(c) \& \begin{tabular}{l}

\[
\left(x^{2}-8 x+15\right)=(x-5)(x-3)
\]
\[
\begin{equation*}
f(x)=x(x-5)(x-3) \tag{2}
\end{equation*}
\] \\
Shape and \((0,0)\) by implication
\end{tabular} \\
\hline (a)
(b)

(c) \& ```
M1 for a correct method to get the factor of x. x(as printed is the minimum.
1st}\textrm{A}1\mathrm{ for }b=-8\mathrm{ or }c=15
-8 comes from -6-2 and must be coefficient of }x\mathrm{ , and }15\mathrm{ from 6x2+3 and must have no xs.
2nd}\textrm{A}1\mathrm{ for }a=1,b=-8 and c=15. Must have x ((x 2 - 8x+15).
M1 for attempt to factorise their 3TQ from part (a).
A1 for all }3\mathrm{ terms correct. They must include the }x\mathrm{ .
For part (c) they must have at most 2 non-zero roots of their f(x)=0 to ft their 3 and their 5.
1 st B1 for correct shape (i.e. from bottom left to top right and two turning points.)
2 nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.
3 rd B1f.t. if graph passes through (0,0) [needn't be marked] and both their 3 and their 5.

``` \\
\hline
\end{tabular}



\section*{GENERAL PRINCIPLES FOR C1 MARKING}

\section*{Method mark for solving 3 term quadratic:}

\section*{1. Factorisation}
\(\left(x^{2}+b x+c\right)=(x+p)(x+q)\), where \(|p q|=|c|\), leading to \(x=\ldots\)
\(\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)\), where \(|p q|=|c|\) and \(|m n|=|a|\), leading to \(x=\ldots\)

\section*{2. Formula}

Attempt to use correct formula (with values for \(a, b\) and \(c\) ).

\section*{3. Completing the square}

Solving \(x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad\) leading to \(x=\ldots\)

\section*{Method marks for differentiation and integration:}

\section*{1. Differentiation}

Power of at least one term decreased by 1. \(\left(x^{n} \rightarrow x^{n-1}\right)\)

\section*{2. Integration}

Power of at least one term increased by 1. \(\left(x^{n} \rightarrow x^{n+1}\right)\)

\section*{Use of a formula}

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values. There must be some correct substitution.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

\section*{Exact answers}

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

\section*{Answers without working}

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

\section*{Misreads}

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.```

