（i） | $A D, E B, C F$ |
| :--- |
| $8+2+7$ |
| 17 litres per second |



\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{equation*}
3 \tag{i}
\end{equation*}
\] \&  \& M1
A1 \& \begin{tabular}{l}
Durations not necessary \\
For a correct activity network \\
For directions indicated correctly
\end{tabular} \\
\hline \& Minimum completion time \(=32\) minutes Critical activities A，E，H \& M1
A1

M1
A1

B1

B1 \& | Follow through their network if possible， provided not significantly simpler，for the passes |
| :--- |
| For forward pass |
| For forward pass correct |
| For backwards pass |
| For backwards pass correct |
| For 32 stated，not just on diagram（cao） |
| For A，E，H stated（not just on diagram（cao） | \\

\hline (iii \&  \& M1
A1

A1 \& | Follow through their start times if possible |
| :--- |
| For structure of chart correct，activities may be collected together or on individual rows |
| For non－critical activities correct（floats optional） |
| For critical activities correct | \\

\hline （iv） \& | e．g． <br> Time <br> $0-4$ | John | Kerry |
| :--- | :--- | :--- |
| $4-8$ | A |  |
| $8-12$ | A | B |
| $12-16$ | C | C |
| $16-20$ | C | C |
| $20-24$ | D | C |
| $24-28$ | D | D |
| $28-32$ | D | D |
| $32-36$ | D | D |
| $36-40$ | D | D |
| $40-44$ | E | E |
| $44-48$ | E | E |
| $48-52$ | E | E |
| $52-56$ | F | ． |
| $56-60$ | H | H |
| $60-64$ | H | H |
| $64-68$ | H | H |
| $68-72$ |  | G $(68-70)$ | \& M1

A1

A1 \& | For structure of schedule correct and all activities shown（with H appearing twice） |
| :--- |
| For activities A，B，C，D，E and F correct： |
| －$A=8, B=4, C=12, D=20, E=12, F=4$ ； |
| －D after A；E after A，B；F after A，B，C； |
| － $\mathrm{C}, \mathrm{D}$ and E done by J and K at same time |
| For activities G and H correct |
| －$\quad \mathrm{G}=2$（may see 4 ）， $\mathrm{H}=12$ |
| －G，H after（D），E，F（not alongside F） |
| －$\quad \mathrm{H}$ done by each of J and K |
| －Total time taken $=70$（minutes） | \\

\hline
\end{tabular}

4 （i）

| stage | state | action | working | maximum |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 4 | ＊ |
|  | 1 | 0 | 4 | ＊ |
| 2 | 0 | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 4+4=8 \\ & 5+4=9 \end{aligned}$ | ＊ |
|  | 1 | 0 | $6+4=10$ | ＊ |
|  | 2 | 1 | 7＋4＝11 | ＊ |
|  | 3 | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 5+4=9 \\ & 6+4=10 \end{aligned}$ | ＊ |
| 3 | 0 | $\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 8+10=18 \\ & 6+10=16 \end{aligned}$ | ＊ |
|  | 1 | $\begin{aligned} & \hline 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & 7+9=16 \\ & 6+11=17 \end{aligned}$ | ＊ |
|  | 2 | $\begin{aligned} & 0 \\ & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & 7+9=16 \\ & 6+11=17 \\ & 8+10=18 \end{aligned}$ | ＊ |
| 4 | 0 | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 5+18=23 \\ & 8+17=25 \end{aligned}$ | ＊ |
|  | 1 | $\begin{aligned} & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & 7+18=25 \\ & 5+18=23 \\ & \hline \end{aligned}$ | ＊ |
| 5 | 0 | $\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 6+25=31 \\ & 8+25=33 \\ & \hline \end{aligned}$ | ＊ |

M1
A1
A1
M1

A1

A1

M1

A1

B1
B1
－（5；0）
Giles will be able to see 33 plants
（ii）Minimax
Route：$(0 ; 0)-(1 ; 0)-(2 ; 3)-(3 ; 0)-(4 ; 0)$
－（5；0）
Or $(0 ; 0)-(1 ; 1)-(2 ; 3)-(3 ; 0)-(4 ; 0)$
－$(5 ; 0)$
At stage 5 all paths have at least 6 plants

For structure of table correct
For stage and state columns correct
For action values correct
For all calculations correct for stages 1 and 2
（may be seen as an addition or the result and may be shown in final column） For suboptimal maxima identified correctly
（may be implied from next stage）

For correct calculations for stage 3 （follow through from stage 2，if possible） For suboptimal maxima correct（ft their totals）
（may be implied from next stage）
For correct calculations for stages 4 and 5 （follow through from stage 3）

Calculations correct for entire table
（cao）or in reverse
For 33 （cao）
For＇minimax＇
For a path with at most one path $>6$ plants
For either correct path
Or stage 3 or any equivalent argument in words

| （i） | What one player wins the other loses | B1 | For a statement equivalent to＇total won each game is zero＇ |
| :---: | :---: | :---: | :---: |
| （ii） | $\begin{aligned} & S \text { and } T: 3>-2 \text { but }-2<1 \text { (or }-1<2) \\ & S \text { and } U: 3>1 \text { (or }-1>-2) \text { but }-2<3 \\ & T \text { and } U:-2<1 \text { (or } 1<3 \text { ) but } 2>-2 \end{aligned}$ | M1 | For considering differences，showing inequalities or considering rows where column maxima and／or minima occur |
|  |  | A1 | For a valid explanation |
|  | $\begin{aligned} & D \text { and } E: 3>-2 \text { but }-2<1 \text { (or } 1<3 \text { ) } \\ & D \text { and } F: 3>-1 \text { (or } 1>-2) \text { but }-2<2 \\ & E \text { and } F:-2<-1 \text { (or } 1<2 \text { ) but } 3>-2 \end{aligned}$ | M1 | For considering differences，showing inequalities or considering columns where row maxima and／or minima occur For a valid explanation |
| （iii） | Row minima are $-2,-2,-2 \Rightarrow$ row maximin $=$ －2 <br> Col maxima are $3,3,2 \Rightarrow$ col minimax $=2$ $2 \neq-2 \Rightarrow$ not stable | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | For identifying -2 correctly or identifying all rows For identifying 2 correctly or identifying col $F$ <br> For a valid explanation，or equivalent in words |
| （iv） | So that for $p_{1}, p_{2}, p_{3} \geq 0$ we will have $m \geq 0$ | B1 | For explaining that this will make $m \geq 0$ （not sufficient to just say that we need to make all the entries non－negative） |
|  | If Colin plays $D$ ，with the augmented payoffs Rhoda will expect to win $5 p_{1}+0 p_{2}+3 p_{3}$ ，and similarly for when Colin chooses $E$ or $F$ $m$ is the minimum of the augmented E（winnings） | B1 B1 | For explaining any of the three expressions on the right hand side of the inequalities For explaining why $m \leq$ each expression |
|  |  | M1 | For a graph of $m$ against $p_{1}$（or $m$ against $p_{2}$ ） with three lines |
|  |  | A1 | For lines（ 0,0 ）－（1，5），（0，3）－（1，0），（0，4）－（1，1） or equivalent |
|  | $\begin{aligned} & P_{1} \\ & 0 \\ & 5 p_{1}=3\left(1-p_{1}\right) \Rightarrow p_{1}=\frac{3}{8}\left(\text { and } p_{2}=\frac{5}{8}\right) \end{aligned}$ | B1 | For convincingly showing how values were obtained（ie identifying $5 p_{1}=3 p_{2}$ or equivalent <br> Or reading off from correct point on graph） Note：$p_{1}=\frac{3}{8}$ and $p_{2}=\frac{5}{8}$ is given in the question |
| (vii | $-0.125$ | B1 | For $-\frac{1}{8}$ ，or equivalent（cao） |
| （viii） | e．g．Toss the coin three times to give eight equally likely possible outcomes，allocate three outcomes to＇play $S$＇and five to＇play T， <br> In the long run she expects to lose $\frac{1}{8}$ per game | M1 A1 B1 18 | For a specific example，or a description of any valid method <br> eg HHT，HTH，THH $\rightarrow S$ all other outcomes $\rightarrow T$ <br> For＇lose（at least）$\frac{1}{8}$ per game＇ |

