Version 1.0

General Certificate of Education June 2010

Mathematics

MM1B

Mechanics 1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is	for accuracy				
В	mark is independent of M or m marks and is	s for method and	accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct x marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B				
Q	Solution	Marks	Total	Comments
1 (a)	30 seconds	B1	1	B1: Correct statement of time.
(b)	$s_1 = \frac{1}{2} \times 40 \times 20 = 400 \text{ m}$	M1 A1	2	M1: A method for calculating the first distance. Must see 40 and $\frac{1}{2}$.
	OR			A1: Correct distance.
	$s_1 = \frac{1}{2} \times (20 + 0) \times 40 = 400 \mathrm{m}$	(M1) (A1)		
	OR			
	$a = -\frac{20}{40} = -\frac{1}{2}$			Note on third method: Must see $-\frac{1}{2}$ or
	$0^2 = 20^2 + 2\left(-\frac{1}{2}\right)s$	(M1)		$-\frac{20}{40}$ plus attempt to find distance for
	$s = 20^2 = 400 \text{ m}$	(A1)		M1.
(c)	$a = -\frac{20}{40} = -\frac{1}{2}$ $0^{2} = 20^{2} + 2\left(-\frac{1}{2}\right)s$ $s = 20^{2} = 400 \text{ m}$ $s_{2} = \frac{1}{2} \times 50 \times 20 = 500 \text{ m}$	M1		M1: Method for finding the second distance and calculating the total distance.
	OR			
	$s_2 = \frac{1}{2} \times (0 + 20) \times 50 = 500 \mathrm{m}$	(M1)		
	OR			
	$a = \frac{20}{50} = \frac{2}{5}$			
	$20^{2} = 0^{2} + 2\left(\frac{2}{5}\right)s$ $s = 20^{2} \times \frac{5}{4} = 500 \text{ m}$	(M1)		Note on third method: Must see $\frac{2}{5}$ or $\frac{20}{50}$
	$s = 20^2 \times \frac{5}{4} = 500 \text{ m}$			plus attempt to find distance.
	Total = 400 + 500 = 900 m	A1F	2	A1F: Correct total distance. Award the follow through mark for correct addition of 500 and their answer to (b).
(d)	$v_{AVERAGE} = \frac{900}{120} = 7.5 \text{ ms}^{-1}$	M1 A1F	2	M1: Their total distance divided by 120 A1F: Correct average speed based on their answer to (c).
(e)	$120 \times 20 - 900 = 1500$ m	M1A1F	2	M1: Multiplication of 20 and 120 to find distance. Note: Award M1 if 2400 seen in this part. A1F: Correct difference based on their answer to (c) provided final answer is positive.
	Total		9	

MM1B (con		1		
Q	Solution	Marks	Total	Comments
2(a)	R or 98 or 10g $F \longleftarrow P$ mg or W or 10g or 98 r 9.8m	B1	1	B1: Correct force diagram with arrows and labels. Note: Award mark if forces drawn on the diagram in the question. Note: Do not accept 10 kg for the weight. Note: Do not accept μR or 0.5 <i>R</i> for <i>F</i> .
(b)(i)	$(R = 10 \times 9.8 =)98$ N	B1	1	B1: Correct normal reaction. Accept 10 <i>g</i> . No need to see the letter <i>R</i> or working.
(ii)	$(F \le) 0.5 \times 98$ $(F \le) 49$	B1F	1	B1: Correct maximum value for friction. Accept 5g. No need to see the letter F or any working. Ignore any inequalities. For FT, must be 0.5 of candidate's answer to (b)(i).
(iii)	$(F =)30 \mathrm{N}$	B1	1	B1: Correct friction. Allow – 30.
(c)	80 - 49 = 10 a	M1A1F		M1: Three term equation motion, containing 80, candidate's 49 and 10 <i>a</i> (not 10 <i>ga</i>) in any combination. A1F: Correct equation including signs.
	$a = 3.1 \mathrm{ms}^{-2}$	A1F	3	A1F: Correct acceleration. FT candidate's answer to (b)(ii).
	Total		7	
				Allow use of $g = 9.81$ (b)(i) 98. 1 B1 (b)(ii) 49.05 or 49.1 or 49 B1 (c) 3.095 or 3.09 or 3.1 M1A1A1

MM1B (con			T ()	
Q	Solution	Marks	Total	Comments
3(a)		M1		M1: Four term conservation of
	$6\begin{bmatrix}2\\4\end{bmatrix} + m\begin{bmatrix}3\\-2\end{bmatrix} = 6\begin{bmatrix}1\\3\end{bmatrix} + m\begin{bmatrix}7\\b\end{bmatrix}$	A1		momentum equation. Allow sign errors.
				A1: Correct equation with correct signs.
				Vector equation may be implied by later
				correct working in this part of the
				question.
	$6 \times 2 + 3m = 6 \times 1 + 7m$	A1		A1: Correct equation for correct
				component.
	12 + 3m = 6 + 7m			
	6 = 4 m			
	m = 1.5	A1	4	A1: Correct <i>m</i> .
				Example if only $12 + 3m = 6 - 7m$
				without a vector equation award
				M1A0A0A0.
(b)	$6 \times 4 + 1.5 \times (-2) = 6 \times 3 + 1.5 b$	B1F		B1F: Correct equation using <i>m</i> or
				candidates <i>m</i> from (a).
	24 - 3 = 18 + 1.5 b			B1F: Correct <i>b</i> from candidate's <i>m</i> from
	3 = 1.5 b			(a).
	b = 2	B1F	2	
				Note: $b = \frac{6}{m} - 2$
	Total		6	
				Consistent use of mg instead of m
				throughout penalise 1 mark.

4(a) $50 \cos \theta = 60 \cos 48^{\circ}$ M1A1M1: Equation for two force forces resolved horizontall way. (Accept 50 sin $\theta = 6$ M1.) A1: Correct equation.OR $50 \cos \theta = 60 \sin 42^{\circ}$ (M1) (A1)A1: Correct equation.OR (from vector triangle and sine rule)(M1) $\sin 42^{\circ} = \frac{60}{\sin (90 - \theta)}$ (M1) (A1)(M1: Use of sine rule with 42° .) (A1: Correct equation.)OR (from Lami's Theorem)(M1) $50 = 60$ (M1) $(M1: Use of Lami's Theorem)$ (M1: Use of Lami's Theorem)	lly in the same 60 sin 48° for h 50, 60 and
OR (from vector triangle and sine rule)(A1) $\frac{50}{\sin 42^{\circ}} = \frac{60}{\sin (90 - \theta)}$ (M1)OR (from Lami's Theorem)(M1)(A1)(A1)(A1)(A1)(A1)(A1)	
$\frac{1}{\sin 42^{\circ}} = \frac{1}{\sin (90 - \theta)}$ (A1) (A1) (A1: Correct equation.) (A1: Correct equation.)	
	rem with 50, 60
$\frac{30}{\sin 138^{\circ}} = \frac{30}{\sin (90 + \theta)}$ (M1) (A1) and 138°.) (A1: Correct equation.)	
For example: $\theta = \cos^{-1}\left(\frac{60\cos 48^{\circ}}{50}\right)$ dM1dM1: Solving for θ . A1: Correct θ .= 36.59^{\circ} = 36.6° (to 3SF)A14M1: Solving for θ . A1: Correct θ . resolving incorrectly with M1A0dM1A0. Accept 36.5 (truncation) a	sines award
(b) $50 \sin 36.59^\circ + 60 \sin 48^\circ = 9.8 m$ OR correct equivalent, for example: M1 AWRT 36.6. M1 M1 M1 : Three term vertical equivalent for example: M1 M1 : Three term vertical equivalent for example: M1 M2 M3 M3 M3 M3 M3 M4 M4 M5 M4 M5 M5 M5 M5 M5 M6 M6 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7 M	resolved y (accept
$50 \sin 36.59^\circ + 60 \cos 42^\circ = 9.8 m$ (M1) (A1F) (M1) (A1F) (A1F)	= 9.8 m for M1).
$\frac{50}{\sin 42^{\circ}} = \frac{mg}{\sin 84.6^{\circ}}$ (M1) (A1F) (M1: Use of vector triangle	le and sine rule.)
OR (from Lami's Theorem)	
$\begin{vmatrix} \frac{50}{\sin 138^{\circ}} = \frac{60}{\sin 95.4^{\circ}} \\ For example: \end{vmatrix}$ (M1) (A1F) (M1: Use of Lami's Theorem	rem.)
$m = \frac{50 \sin 36.59^\circ + 60 \sin 48^\circ}{9.8} = 7.59$ A1 3 A1: Correct value for <i>m</i> C Accept 7.58, AWRT 7.6.	CAO.
Total 7	
Allow use of $g = 9.81$ (b) 7.58M1A1A1	1

Q	Solution	Marks	Total	Comments
5(a)	$(v =) \sqrt{30^2 + 100^2}$ = 104.4 = 104 ms ⁻¹ (to 3SF)	M1A1 A1	3	M1: Equation or expression to find v based on Pythagoras. Must be +. For example: 10900 oe scores M1. A1: Correct equation or expression, with square root.
(b)	$\theta = \tan^{-1}\left(\frac{30}{100}\right) \text{ or } \tan^{-1}\left(\frac{100}{30}\right)$ = 017°	M1	2	A1: Correct v. Accept 104.4. M1: Trigonometric equation to find α .
	OR $\theta = \sin^{-1} \left(\frac{30}{104.4} \right) \text{ or } \sin^{-1} \left(\frac{100}{104.4} \right)$	A1F (M1)	2	A1F: Correct α . Follow through incorrect answer from (b). Note: Subtracting 17 etc from other values such as 360 or 90 can not be ignored and will score M1.
	= 017° OR $\theta = \cos^{-1}\left(\frac{100}{104 \ 4}\right) \text{ or } \cos^{-1}\left(\frac{30}{104 \ 4}\right)$	(A1F) (M1)		Accept 16 or 17 or 16.6 or 16.7 or 16.8. Also accept all of these with a zero in front, eg 016.
	(104.4) (104.4) = 017° Total	(A1F)	5	

Q	Solution	Marks	Total	Comments
6(a)	12 g - T = 12 a	M1A1		M1: Three term equation of motion, with $12g$ (or 117.6), $12a$ (not $12ga$) and <i>T</i> . A1: Correct equation
	T - 8g = 8a $4g = 20a$	M1A1		M1: Three term equation of motion, with $8g$ (or 78.4), $8a$ (not $8ga$) and T . A1: Correct equation
	$a\left(=\frac{4 g}{20}\right)=1.96 \text{ ms}^{-2} \text{ AG}$	A1	5	A1: Correct acceleration from correct working.
				Note: Do not penalise candidates who consistently use signs in the opposite direction throughout, provided they give their final answer as 1.96. If final answer is – 1.96 don't award final A1 mark.
				Special Case: Whole String Method $4g = 20a$ and $a = \frac{4g}{20} = 1.96 \text{ OE M1A1A1}$
(b)	$T = 8 g + 8 \times 1.96 = 94.1 \mathrm{N}$	M1A1	2	M1: Use of three term equation of motion to find <i>T</i> , with $a = 1.96$. A1: Correct tension. Accept 94.08.
(c)(i)	$v = 0 + 1.96 \times 2 = 3.92 \text{ ms}^{-1}$	M1A1	2	M1: Use of constant acceleration equation to find v, with $a = 1.96$ and u = 0. A1: Correct v. Using $s = 4$ scores M0.
(ii)	$v^2 = 3.92^2 + 2 \times 9.8 \times 4$	M1 A1F		M1: Use of constant acceleration equation to find v, with $a = \pm 9.8$ and $u \neq 0$. A1F: Correct equation. FT initial velocity from (c)(i).
	$v = 9.68 \text{ ms}^{-1}$	A1F	3	A1F: Correct <i>v</i> . FT initial velocity from (c)(i). For example 11.8 from 7.84.

Q	Solution	Marks	Total	Comments
(c)(iii)	$4 = \frac{1}{2} \left(-3.92 + 9.68 \right) t$	M1A1 A1		M1: Use of $s = \frac{1}{2}(u+v)t$
	2	711		A1: Correct values.
				A1: Correct signs.
	<i>t</i> = 1.39	dM1		dM1: Solving for <i>t</i> .
		A1	5	A1: Correct <i>t</i> .
	OR			
	$-4 = 3.92 t - 4.9 t^2$	(M1)		M1: Forming a quadratic with candidates
	$4.9t^2 - 3.92t - 4 = 0$	(A1)		u from (c)(i) or v from (c)(ii) with 4.9 or
		(A1)		9.8.
	$t = \frac{3.92 \pm \sqrt{3.92^2 - 4 \times 4.9 \times (-4)}}{2 \times 4.9}$			A1: Correct terms in quadratic. A1: Correct signs in quadratic.
	t = 1.39 or $t = -0.588$	(dM1)		dM1: Solving quadratic (do not penalise
	t = 1.39	(A1)		for negative discriminant). A1: Correct root seen (other root does not
				need to be seen).
	OR			
	t + t = -0.4 + 0.4 + 0.588	(M1)		M1: Finding total time from two or three
	$t_{up} + t_{down} = 0.4 + 0.4 + 0.588$	(A1)		times.
		(dM1)		A1: 0.4 or 0.8 seen.
		(A1)		dM1: Finding second or third time for
	=1.39 (to 3SF)	(A1)		downward motion.
	OR			A1: Obtaining 0.588 or 0.988. A1: 1.39. Accept 1.38.
	OK .			A1. 1.59. Accept 1.58.
	9.68 = -3.92 + 9.8t	(M1)		M1: Use of $v = u + at$
		(A1)		A1: Correct values.
	13.6	(A1)		A1: Correct signs.
	$t = \frac{13.6}{9.8} = 1.39$	(dM1)		dM1: Solving for <i>t</i>
	7.0	(A1)	18	A1: Correct <i>t</i>
	Total		17	Use of $g = 9.81$
				0.50 or g = 9.01
				(a) 1.962 M1A1M1A1A0
				(b) 94.2 M1A1
				(c) (ii) 9.69 M1A1A1
				(c) (iii) 1.39 M1A1A1dM1A1
				•

MM1B(cont)
	<i>come</i>)

MM1B- AQA	GCF Mar	k Scheme	2010	June	series
		Contenie	2010	June	361163

Q	Solution	Marks	Total	Comments
7(a)	$10\mathbf{a} = 9\mathbf{i} + 12\mathbf{j}$	M1		M1: Application of Newton's second Law
	$\mathbf{a} = (0.9 \mathbf{i} + 1.2 \mathbf{j}) \mathrm{ms}^{-2}$	A1	2	with $m = 10$ in vector form. A1: Correct acceleration.
	$\mathbf{a} = (0.91 + 1.2 \mathbf{j}) \text{ms}$	AI	Z	If acceleration incorrect follow their value
				through for the rest of this question.
				unough for the fest of this question.
(b)(i)	$\mathbf{r}(5) =$			
	$(2.2i+1j)\times 5+\frac{1}{2}(0.9i+1.2j)\times 5^{2}$	M1		M1: Use of constant acceleration to find
	<u>L</u>			position vector at $t = 5$, with $\mathbf{u} \neq 0\mathbf{i} + 0\mathbf{j}$.
	$= 22.25 \mathbf{i} + 20 \mathbf{j}$	A1F		A1F: Correct position vector, for
				candidate's acceleration which must be a
				vector. Allow $22.3\mathbf{i} + 20\mathbf{j}$.
	$d = \sqrt{22.25^2 + 20^2} = 29.9$ metres	dM1	4	dM1: Calculation of distance from
		A1F	4	position vector. Must see + sign. A1F: Correct distance, for their
				acceleration.
				Accept 30 from $22.3\mathbf{i} + 20\mathbf{j}$.
(ii)	$\mathbf{v} = (2.2\mathbf{i} + 1\mathbf{j}) + (0.9\mathbf{i} + 1.2\mathbf{j})t$	M1		M1: Use of constant acceleration equation
		A1F	2	to find an expression for v , with
				$\mathbf{u} \neq 0 \mathbf{i} + 0 \mathbf{j} .$
				A1F: Correct \mathbf{v} for their acceleration.
(iii)	$\mathbf{v} = (2.2 + 0.9t)\mathbf{i} + (1 + 1.2t)\mathbf{j}$	M1		M1: Equation involving both \mathbf{i} and \mathbf{j}
、 <i>y</i>	2.2 + 0.9t = 1 + 1.2t			components of their velocity. Could have
	2.2 + 0.9t = 1 + 1.2t 1.2 = 0.3t	A1F		incorrect signs, for example
	t = 4	A1F	3	2.2 + 0.9t = -(1 + 1.2t).
				A1F: Correct equation.
				A1F: Correct time, for their acceleration.
	Total		11	

Q	Solution	Marks	Total	Comments
8 (a)	$14.7 \sin \alpha - 9.8t (= 0)$	M1A1	_ • ••••	M1: Equation for vertical velocity being
	$t = \frac{14.7 \sin \alpha}{9.8} = \frac{3 \sin \alpha}{2} \text{AG}$ OR	A1	3	 zero at highest point. Must have sin α with ±9.8. A1: Correct equation. A1: Correct result from correct working.
	14.7 sin αT – 4.9 T^2 (=0)			
	$T = \frac{14.7 \sin \alpha}{4.9} = 3 \sin \alpha$			
	$t = \frac{3\sin\alpha}{2}$	(M1) (A1) (A1)		All marks awarded for last line, from correct working.
(b)(i)	$7 = 14.7 \sin \alpha \left(\frac{3 \sin \alpha}{2}\right) - 4.9 \left(\frac{3 \sin \alpha}{2}\right)^2$	M1 A1		M1: Expression including vertical displacement at height 7, using expression from part (a) and with $\pm g$ or equivalent.
	$7 = 11.025 \sin^2 \alpha$	dM1		A1: Correct expression. dM1: Simplified expression with $\sin^2 \alpha$.
	$\alpha = \sin^{-1}\left(\sqrt{\frac{7}{11.025}}\right) = 52.8^{\circ}$	dM1 A1	5	dM1: Finding an angle. Must have previous dM1 mark. A1: Correct angle.
	OR			Accept 52.7°, 52.9°.
	$0^{2} = (14.7 \sin \alpha)^{2} + 2 \times (-9.8) \times 7$ $\sin^{2} \alpha = \frac{2 \times 9.8 \times 7}{14.7^{2}}$ $\alpha = 52.8^{\circ}$	(M1) (A1) (dM1) (dM1)		
		(A1)		
(ii)	<i>OA</i> =14.7 cos 52.8°×3 sin 52.8°	B1M1		B1: Use of $3\sin\alpha$ with their α . M1: Finding horizontal displacement. including 14.7 $\cos\alpha$ with $3\sin\alpha$ or $\frac{3\sin\alpha}{2}$
	OA = 21.2 m	A1	3	A1: Correct distance. Accept 21.3 m.
(c)	Ball is a particle/No spin. No air resistance/No wind/Constant acceleration of 9.8/Only force is weight.	B1 B1	2	B1: Particle assumption. B1: Air resistance assumption.
	Total		13	
	TOTAL		75	Use of $g = 9.81$: (a) M1A1A0 (b)(i) 52.8° or 52.9°
				M1A1dM1dM1A1 (b)(ii) 21.2 B1M1A1