

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

CHEMISTRY - CH2

SECTION A

Q.1	(a)	Calcium carbonate	[1]
	(b)	Sodium carbonate	[1]
Q.2	Metall Coval	lic (1) ent and van der Waals (1)	[2]
Q.3	$Ca_3(PO_4)_2$		[1]
Q.4	D		[1]
Q.5	Materials that change their properties in response to a change in conditions / environment / surroundings		[1]
Q.6	(a)	Alkene / double bond (1) Alcohol / hydroxyl / hydroxy (1)	[2]
	(b)	$C_5H_{10}O$	[1]
		To	otal [10]

SECTION B

Q.7 (a) Compound that contains no double bonds / single bonds only (Accept contains maximum number of hydrogens) [1]

(b) (i)
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$
 [2] products (1) balancing (1)

[1]

(c) Cracking (1)
Heat fraction strongly / heat over a catalyst (1)
Accept equation or description of cracking [2]

(d) Planar molecule with trigonal arrangement about each atom / bond angles roughly 120° (1)

Four (single) **covalent** C - H bonds and one C = C double bond (1)

$$\pi$$
 bond in C = C formed by sideways overlap of p orbital (1) [3]

QWC: Information is organised clearly and coherently, using specialist vocabulary where appropriate. [1]

(e) Electrophilic addition (1)

[2]

(g) Moles ethanol = $\frac{230}{46}$ = 5 (1)

Moles glucose = 2.5(1)

Mass glucose =
$$2.5 \times 180 = 450 \text{ g}$$
 (1) [3]

Total [16]

[6]

[1]

[2]

Q.8 (a)
$$C_4H_{10} + CI_2 \longrightarrow C_4H_9CI + HCI$$
 (1)

UV light (1)

any of following for 4 max

$$Cl_2 \longrightarrow 2Cl^{\bullet}$$
 (1)

Free radical substitution / photochlorination (1)

$$Cl^{\bullet} + C_4H_{10} \longrightarrow {}^{\bullet}C_4H_9 + HCl (1)$$

$${}^{\bullet}C_4H_9 + Cl_2 \longrightarrow C_4H_9Cl + Cl^{\bullet}(1)$$

e.g.
$$Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$$
 (1)

QWC: Selection of form and style of writing appropriate to purpose and to complexity of subject matter.

- (b) $C_4H_9CI + NaOH \longrightarrow C_4H_9OH + NaCI (1)$
 - Nucleophilic substitution / hydrolysis
- (c) Heat with NaOH (1)
 - Add HNO₃ then AgNO₃ (1)
 - White precipitate seen (1) [3]
- Ozone layer depleted / (leads to) increased incidence of skin cancer (d)
 - Contributes to greenhouse effect / increases global warming [1]

Total [13]

Q.9 (a) C=O absorption at 1650–1750 cm⁻¹

C-O absorption at 1000-1300 cm⁻¹

O-H absorption at 2500-3500 cm⁻¹

3 correct peaks labelled

[2]

[1]

(2 correct peaks labelled 1 mark)

(b) Molecular ion at m/z 60 shows that M_r is 60 (1)

Peak at m/z 15 shows CH₃ group / peak at m/z 45 shows COOH group (1) [2]

(c) (i) O H—O

(Accept 1 hydrogen bond)

(ii) (Intermolecular bond formed) when hydrogen attached to a highly electronegative atom (oxygen) (1)

is bonded to an electronegative atom in another molecule (1)

forming very strong dipole – dipole attraction (1) [3]

QWC: Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning [1]

(d) (i) Acidified and heat / reflux [1]

(ii) Colour change from orange to green [1]

(e) Propane would be lower as it cannot form hydrogen bonds / only forms van der Waals forces between molecules (1)

Butan-1-ol would be higher as it (also has hydrogen bonds but) has more van der Waals forces between molecules (1) [2]

Total [13]

Q.10 (a) (i) $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$ [1]

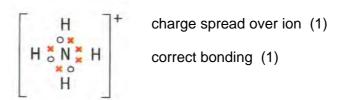
 (ii)
 Element
 Initial Oxidation State
 Final Oxidation State

 Nitrogen
 -3
 2

 Hydrogen
 1
 1

 Oxygen
 0
 -2

All three rows correct (2) (1 mark if two rows correct)


Nitrogen oxidised as its oxidation state has increased (1) [3]

(iii) NH₃ has 3 bonding and 1 non bonding pair of electrons (1)

 BF_3 has 3 bonding pairs only (1)

Electron pairs position themselves as far apart as possible (to minimise repulsion) (1) [3]

(b) (i) A covalent bond where one of the atoms has donated both electrons in the shared pair [1]

[2]

(iii) Tetrahedral (1)

109½° (1) (accept 109°) [2]

(iv) Water is polar / a polar solvent (1)

Anion is attracted to H^{δ_+} / cation is attracted to O^{δ_-} (1) [2]

Total [14]

Q.11 Lilac flame (1) (a) (i) White solid / white fumes / potassium melts (1) [2] 4K + O₂ — → 2K₂O (ii) [1] More reactive (1) (iii) Electrons in rubidium lost more easily / ionisation energy is less / explanation e.g. increased sheilding (1) [2] (Need reason to get first mark but accept more reactive as reactivity increases down group for 1 mark) No. moles = $\frac{0.098}{23}$ = 0.00426 (b) (i) [1] (ii) Moles $H_2 = 0.00213$ (1) Volume $H_2 = 0.00213 \times 24 = 0.0511 \text{ dm}^3$ (1) [2] Moles NaOH = 0.00426 (1) (iii) Concentration NaOH = $0.00426 = 0.0213 \text{ mol dm}^{-3}$ (1) [2] (c) Do the experiment in a fume cupboard (i) [1] I (ii) 6:6 [1] Ш Electrostatic forces between the oppositely charged ions (1)

energy needed (1)

ionic bonds are / ionic lattice is very strong so large amount of

Total [14]

[2]

Section B Total [70]