4726

4726 Further Pure Mathematics 2

1	(i)	Get 0.876096, 0.876496, 0.876642	B1√	For any one correct or $\sqrt{1}$ from wrong answer; radians only
			B 1	All correct
	(ii)	Subtract correctly (0.00023(0), 0.000084)	B1√	On their answers
		Divide their errors as e_4/e_3 only	M1	May be implied
		Get 0.365(21)	A1	Cao
2	(i)	Find $f'(x) = 1/(1+(1+x)^2)$	M1	Quoted or derived; may be simplified or left as $\sec^2 y dy/dx = 1$
		Get $f(0) = \frac{1}{4\pi}$ and $f'(0) = \frac{1}{2}$ Attempt $f''(x)$	A1√ M1	On their $f'(0)$; allow $f(0)=0.785$ but not 45 Reasonable attempt at chain/quotient rule
		Correctly get $f''(0) = -\frac{1}{2}$	A1	or implicit differentiation A.G.
	(ii)	Attempt Maclaurin as $af(0)+bf'(0)+cf''(0)$	M1	Using their $f(0)$ and $f'(0)$
		Get $\frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2$	A1	Cao; allow 0.785
3	(i)	Attempt gradient as $\pm f(x_1)/(x_2 - x_1)$	M1	Allow reasonable <i>y</i> -step/ <i>x</i> -step
		Equate to gradient of curve at x_1	M 1	Allow \pm
		Clearly arrive at A.G.	A1	Beware confusing use of \pm
		SC Attempt equation of tangent	M1	As $y - f(x_1) = f'(x_1)(x - x_1)$
		Put $(x_2, 0)$ into their equation	M1	
		Clearly arrive at A.G.	A1	
	(ii)	Diagram showing at least one more tangent	B1	
		Description of tangent meeting <i>x</i> -axis, used as next starting value	B1	
	(iii)	Reasonable attempt at N-R	M1	Clear attempt at differentiation
		Get 1.60	A1	Or answer which rounds
4	(i)	State $r = 1$ and $\theta = 0$.	B1	May be seen or implied
			D 1	Correct shape, decreasing r (not through
		0 1	B1	<i>O</i>)
	(ii)	Use $\frac{1}{2}\int r^2 d\theta$ with $r = e^{-2\theta}$ seen or implied Integrate correctly as $-\frac{1}{8}e^{-4\theta}$	M1 A1	Allow $\frac{1}{2}\int e^{4\theta} d\theta$
		Use limits in correct order	M1	In their answer
		Use $r_1^2 = e^{-4\theta}$ etc.	M1	
		Use $r_1 = e$ etc.	11/1	May be implied

5	(i)	Use correct definitions of cosh and sinh	B1	
		Attempt to square and subtract	M1	On their definitions
		Clearly get A.G.	A1	
		Show division by cosh ²	B1	Or clear use of first result
	(ii)	Rewrite as quadratic in sech and		Or quadratic in cosh
		attempt to solve	M1	
		Eliminate values outside $0 < \text{sech} \le 1$	B1	Or eliminate values outside $\cosh \ge 1$ (allow positive)
		Get $x = \ln(2 + \sqrt{3})$	A1	-
		Get $x = -\ln(2+\sqrt{3})$ or $\ln(2-\sqrt{3})$	A1	
6	(i)	Attempt at correct form of P.F.	M1	Allow $Cx/(x^2+1)$ here; not $C = 0$
		Rewrite as 4=	1	
		A(1 + x)(1 + x2) + B(1 - x)(1 + x2) + (Cx + D)(1 - x)(1 + x)	M1 √	From their P.F.
		Use values of <i>x</i> /equate coefficients	M1	
		Get $A = 1, B = 1$	A1	CWO
		Get $C = 0, D = 2$	A1	
				SC Use of cover-up rule for <i>A</i> , <i>B</i> M1 If both correct A1 cwo
	(ii)	$\operatorname{Get} A\ln(1+x) - B\ln(1-x)$	M1	Or quote from List of Formulae
		Get $D \tan^{-1} x$	B1	*
		Use limits in their integrated expressions	M 1	
		Clearly get A.G.	A1	
7	(i)	LHS = sum of areas of rectangles, area =		
		1x y-value from $x = 1$ to $x = n$	B1	
		RHS = Area under curve from $x = 0$ to n	B1	
	(ii)	Diagram showing areas required	B1	
		Use sum of areas of rectangles	B1	
		Explain/show area inequality with	D1	
		limits in integral clearly specified	B1	
	(iii)	Attempt integral as $kx^{4/3}$	M1	
		Limits gives 348(.1) and 352(.0)	A1	Allow one correct
		Get 350	A1	From two correct values only

4726

Mark Scheme

January 2010

4726		Mark Scheme		January 2010
8	(i)	Get $x = 1, y = 0$	B1,B1	
	(ii)	Rewrite as quadratic in x Use $b^2 - 4ac \ge 0$ for all real x Get correct inequality State use of $k > 0$ to A.G.	M1 M1 A1 A1	$(x^{2}y - x(2y + k) + y = 0)$ Allow >, = here $4ky + k^{2} \ge 0$
		State use of k>0 to A.G.	AI	SC Use differentiation (parts (ii) and (iii))Attempt prod/quotient ruleM1Solve = 0 for $x = -1$ A1Use $x = -1$ only (reject $x=1$), $y = -\frac{1}{4}kA1$ Fully justify minimumB1Attempt to justify for all x M1Clearly get A.G.A1
	(iii)	Replace $y = -\frac{1}{4k}$ in quadratic in x Get $x = -1$ only	M1 A1	
			B1	Through origin with minimum at $(-1, -\frac{1}{4}k)$ seen or given in the answer
			B1	Correct shape (asymptotes and approaches)
		$(-1, -\frac{1}{4k})$ $x = 1$	x	SC (Start again) Differentiate and solve $dy/dx = 0$ for at lease one x-value, independent of k M1 Get $x = -1$ only A1
9	(i)	Rewrite $\tanh y$ as $(e^{y} - e^{-y})/(e^{y} + e^{-y})$ Attempt to write as quadratic in e^{2y} Clearly get A.G.	B1 M1 A1	Or equivalent
	(ii)	(a) Attempt to diff. and solve = 0 Get $\tanh x = b/a$ Use $(-1) < \tanh x < 1$ to show $b < a$	M1 A1 B1	
			21	SC Use exponentialsM1Get $e^{2x} = (a+b)/(a-b)$ A1Use $e^{2x} > 0$ to show $b < a$ B1
				SC Write $x = \tanh^{-1}(b/a)$ M1 = $\frac{1}{2}\ln((1 + b/a)/(1 - b/a))$ A1 Use () > 0 to show $b < a$ B1
		(b) Get $\tanh x = 1/a$ from part (ii)(a) Replace as ln from their answer Get $x = \frac{1}{2} \ln ((a + 1)/(a - 1))$	B1 M1 A1	
		Use $e^{i/2\ln((a+1)/(a-1))} = \sqrt{((a+1)/(a-1))}$ Clearly get A.G. Test for minimum correctly	M1 A1 B1	At least once
				SC Use of $y = \cosh x(a - \tanh x)$ and $\cosh x = 1/\operatorname{sech} x = 1/\sqrt{(1 - \tanh^2 x)}$