Version 1.0 0107

General Certificate of Education

Mathematics 6360

MS2B Statistics 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
Е	mark is for explanation							
$\sqrt{\text{or ft or F}}$	follow through from previous							
	incorrect result	MC	mis-copy					
CAO	correct answer only	MR	mis-read					
CSO	correct solution only	RA	required accuracy					
AWFW	anything which falls within FW further work							
AWRT	anything which rounds to	ISW	ignore subsequent work					
ACF	any correct form	FIW	from incorrect work					
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	С	candidate					
PI	possibly implied	Sf	significant figure(s)					
SCA	substantially correct approach	Dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

MS2B

Q	Solution	Marks	Total	Comments
1	$\overline{x} = 39.5$ $s = 4.84$ $(s^2 = 23.4)$	B1B1		$\sigma = 4.53 \left(\sigma^2 = 20.5\right)$
	$t_{\rm crit} = 2.365$	B1		
	0.70/ 57 0			
	95% CI for μ			
	$= \overline{x} \pm t_{\rm crit} \times \frac{s}{\sqrt{n}}$			
	$=39.5\pm2.365\times\frac{4.84}{\sqrt{8}}$	M1		$39.5 \pm 2.365 \times \frac{4.53}{\sqrt{7}}$
	$=39.5 \pm 4.05$			V /
	=(35.5,43.5)	A 1√	5	
	Total		5	
2(a)(i)	$P(A=4) = \frac{e^{-3.5} \times (3.5)^4}{4!} = 0.189$	M1A1	2	
(ii)	$P(B \le 6) = 0.762$	В1	1	
(iii)	$T = A + B \sim \text{Po}(8.5)$			
	P(T fewer than 10) = P(T < 10)	M1		Use of Po (8.5)
	$= P(T \le 9)$	M1		$T \le 9$ attempted
	•	A1	3	CAO
			_	
(b)	$X \sim B(5, 0.653)$	B1		$X \sim B(5, \text{their } p)$
	$= 0.653$ $X \sim B(5,0.653)$ $P(X \ge 4) = {5 \choose 4} (0.653)^4 (0.347)$ $+ (0.653)^5$ $= 0.31547 + 0.11873$			
	$+(0.653)^{5}$	M1		
	=0.31547+0.11873			
	=0.434	A1√	3	On their p from (a)(iii)
(c)(i)	$\overline{x} = 9.2$	В1		
	$s^2 = 9.29$	B1	2	$\sigma^2 = 8.36$
(ii)	Mean and variance have similar values which suggests that Poisson distribution may be appropriate	B1√ B1√	2	
	Total		13	
1	10001			1

Q Q	Solution	Total	Comments	
3	$\overline{x} = 83.5$	Marks B1	TULAL	Comments
	x - 65.5	Di		
	2 1 (15221) 154.76			$(154 < s^2 \le 155)$
	$s^2 = \frac{1}{99}(15321) = 154.76$			
	s = 12.44	B1		$(154 < s^2 \le 155)$ $(12.4 \le s \le 12.45)$
	$H_0: \mu = 85.9$,
	$H_1: \mu \neq 85.9$	B1		
	-			
	Under H_0 , $\bar{X} \sim N \left(85.9, \frac{(12.44^2)}{100} \right)$			
	$z_{\rm crit} = \pm 1.96$	B1		z = 1.96 + 2 tail test used
	$z = \frac{83.5 - 85.9}{1} = -1.929$	3.54		$\left(\text{their }\overline{x}\right) - 85.9$
	$z = \frac{83.5 - 85.9}{12.44 / 10} = -1.929$	M1		${\text{(their }s)/10}$
	, -0	A1		
				AWFW -1.94 to 1.92
	accept H_0 , reject the claim	A1√		On their z
	Insufficient evidence to suggest that the			
	mean has changed from 85.9 at the 5%	E1√	8	
	level of significance.			
	Total		8	
4(a)	$\sum p = 1$			
	k = 1 - (0.01 + 0.05 + 0.14 + 0.30 + 0.12)			
	k = 0.38	B1	1	
			-	
(b)(i)	$E(X) = \sum_{\text{all } x} x P(X = x) = 4.35$	B1	1	$\frac{87}{20}$
	all x		-	20
(22)	$\mathbf{v}_{\mathbf{v}}(\mathbf{v}) \mathbf{\nabla}^{2} \mathbf{v}(\mathbf{v})$	N / 1		-(2)
(ii)	$Var(X) = \sum_{\text{all } x} x^2 P(X = x) - \mu^2$	M1		$E(X^2)$ attempted
	=20.09-18.9225	M1		$\sum x^2 P(X = x) - \mu^2$
	_1 1675	A 1	3	$\frac{467}{400}$ (AWFW 1.16 – 1.17)
	=1.1675	A1	3	$\frac{1}{400}$ (AWFW 1.16 – 1.17)
(3/4)	$\mathbf{E}(\mathbf{v})$ $\mathbf{c}\mathbf{E}(\mathbf{v})$ 2			
(c)(i)	E(Y) = 5E(X) + 2			
	$=5\times4.35+2$	M1	1	Their (b)(i) \times 5 + 2
	= 23.75			
(ii)	Var(Y) = 25Var(X)	M1		Their (b)(ii) \times 25
()	= 29.1875			(-)(-)
		1		
	Standard deviation $= 5.40$	m1	_	(5.40, 5.41)
		A1	3	(5.40 – 5.41)
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)	$H_0: \mu = 30$			
	$H_1: \mu > 30$	B1		
	$\overline{x} = 33.5$ and $s = 4.25 (s^2 = 18.06)$	B1B1		$\sigma = 4.03 \ (\sigma^2 = 16.25)$
	Under H_0 $\overline{X} \sim N \left(30, \frac{\left(4.25^2 \right)}{10} \right)$			↓
	$t = \frac{33.5 - 30}{4.25 / \sqrt{10}} = 2.60$	M1A1		$\frac{33.5 - 30}{4.03 / \sqrt{9}} (2.6 - 2.61)$
	$t_{\rm crit} = 2.821$	B1		
	do not reject H ₀			
	Insufficient evidence at the 1% level of significance that Jasmine's teacher is			
	underestimating the time that it takes to	-	_	
	complete the homework assignments.	E1√	7	
(b)	Times are Normally distributed	B1	1	
	Total		8	
6(a)	0.6 - EXO 0.6 - EXO 0.4 - EXO 0.7 - EXO	B1 B1 B1	3	for curve for line for axes
(b)	$P(T \ge 1) = \frac{1}{2} \times \frac{7}{8} \times 2 = \frac{7}{8}$	M1A1	2	OE

Q Q	Solution	Marks	Total	Comments
6(c)(i)	For $1 \le t \le 3$			
	$\int_{1}^{t} \frac{1}{16} (t+5) dt = \left[\frac{1}{32} t^{2} + \frac{5}{16} t \right]_{1}^{t}$	M1A1		
	$F(1) = \frac{1}{8}$	B1		
	$F(t) = \frac{1}{8} + \frac{1}{32}t^2 + \frac{5}{16}t - \frac{11}{32}$	M1		Use of: $F(t) = F(1) + \int_{1}^{t} \frac{1}{16}(t+5)dt$
	$F(t) = \frac{1}{32} \left(t^2 + 10t - 7 \right)$	A1	5	AG
	Alternative:			
	$\int \frac{1}{16} (t+5) \mathrm{d}t$	(2.51)		
	$= \frac{1}{16} \left(\frac{1}{2} t^2 + 5t + c \right)$	(M1) (A1)		
	$F(1) = \frac{1}{8}$	(B1)		
	$\Rightarrow c = -3.5$	(M1)		
	$F(1) = \frac{1}{8}$ $\Rightarrow c = -3.5$ $F(t) = \frac{1}{32} (t^2 + 10t - 7)$	(A1)		
(ii)	$\frac{1}{32}(m^2 + 10m - 7) = 0.5$ $m^2 + 10m - 23 = 0$	M1		
	$m^2 + 10m - 23 = 0$	A1		
	$m = \frac{-10 \pm \sqrt{192}}{2} = -5 \pm \sqrt{48}$	m1		(or any valid method)
	$= -5 \pm 4\sqrt{3}$ $(m > 0)$			
	$m = 4\sqrt{3} - 5 = 1.93$	A1	4	(1.9282)
	Total		14	

Q		ution		Marks	Total	Comments	
7(a)	H ₀ : No a			D.1			
	performances at KS3 and GCE				B1		
	O_i	E_{i}	$O_i - E_i$	X^2			
	60	63.55	-3.55	0.1983			
	55	44.64	10.36	2.4043	M1		E_i
	40	46.81	-6.81	0.9907	3.54		
					M1		$O_i - E_i$ $(O_i - E_i)^2 / E_i$
	55 32	51.25	3.75 -4.00	0.2744			2.4
	38	36.00 37.75	0.25	0.4444	M1		$(O_i - E_i)^2 / E_i$
	30	37.70	0.22	0.0017			5
	47	46.33	0.67	0.0097	M1		\sum
	31 35	32.54 34.13	-1.54 0.87	0.0733			
	33	34.13	0.87	0.0222			
	43	43.87	-0.87	0.0173			
	26	30.82	-4.82	0.7527			
	38	32.31	5.69	1.0005			
			$X^2 =$	6.1897	A1		AWFW 6.05 – 6.35
	$v = 3 \times 2 = 6$ $\Rightarrow \chi^2_{90\%} = 10.645$			B1B1√		on their ν	
	Do not rej	ject H _o					
	No evidence to suggest an association between KS3 results and GCE grades at 10% level of significance.			E1√	9		
(b)	KS3 gain grade A's at GCE than			E1	1		
	expected.				El		
				Total		10	

Q	Solution	Marks	Total	Comments
8(a)	$f(x) = \begin{cases} \frac{1}{9} & -4 \le x \le 5\\ 0 & \text{otherwise} \end{cases}$	M1 A1	2	
(b)				
	0.14 The 0.10 O.1	B1		horizontal line from –4 to 5
	0.00 0.00 0.04	B1	2	for drawn at $\frac{1}{9}$
	-0 0.00 ×			
(c)	$P(X > 2) = \frac{1}{9} \times 3$	M1		F(5)-F(2)
	$=\frac{1}{3}$	A1	2	$=1-\frac{2}{3}$
	$-\frac{1}{3}$	Al	2	$=\frac{1}{3}$
(d)	$Mean = \frac{1}{2}$	B1		
	Variance = $\frac{1}{12} \times 81$			
	= 6.75	B1	2	
	Total		8	
	TOTAL		75	

www.qyconsult.com