

**GCE** 

# **Chemistry A**

**Advanced GCE** 

Unit F324: Rings, Polymers and Analysis

# Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

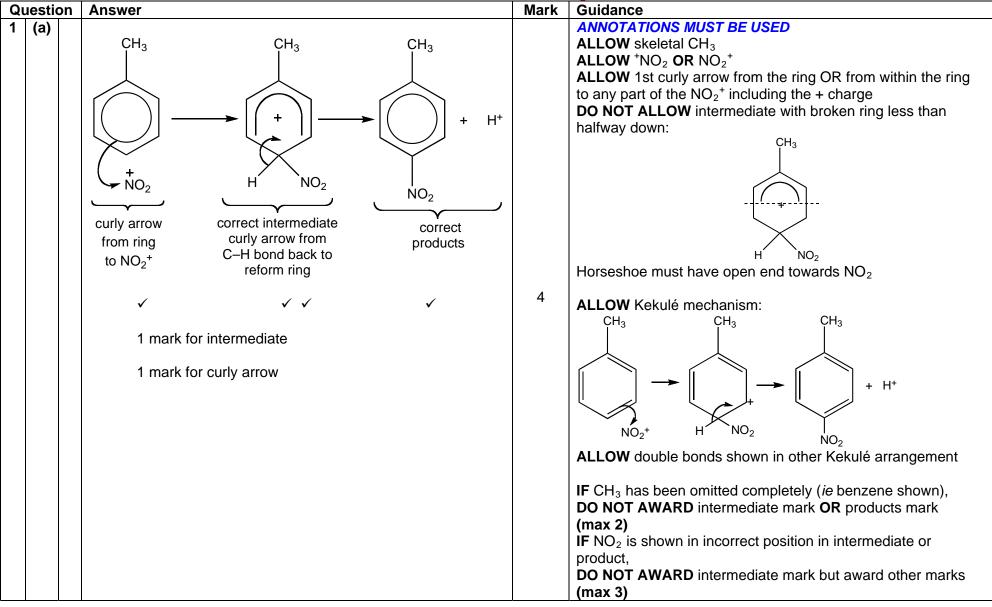
This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

#### © OCR 2011


Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

# **ALLOW Kekulé structures throughout**



| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (b )   | $O_2N$ $O_2$ $O_3$ $O_2$ $O_3$ $O_4$ $O_2$ $O_4$ $O_2$ $O_4$ $O_2$ $O_4$ $O_2$ $O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | ALLOW NO <sub>2</sub> —  Note: connectivity is NOT being assessed in this part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 (c)    | 1st stage isomer: isomer 3 ✓ product:  reagents: Sn AND (conc) HCI ✓ equation:  CH <sub>3</sub> + 12 [H]  + 4 H <sub>2</sub> O NH <sub>2</sub> NH <sub>2</sub> NH <sub>2</sub> V NH <sub>2</sub> |      | ALLOW structure of isomer 3 shown separately OR in equation  ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> (NH <sub>2</sub> ) <sub>2</sub> ALLOW Zn + HCl/H <sub>2</sub> + metal catalyst/LiAlH <sub>4</sub> /Na in ethanol IGNORE NaBH <sub>4</sub> ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH  IF isomer 3 OR product are given in equation but not shown previously then credit here  Also credit reagents here if shown (eg above arrow)  ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous |

| Question | Answer                                      | Mark | Guidance                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (i)  | 2nd stage organic compound: HOOC−CH₂−COOH ✓ | 6    | DO NOT ALLOW molecular formula  ALLOW name of compound: propanedioic acid OR propane-1,3-dioic acid ALLOW absence of 'e' after 'propan'  ALLOW acyl dichloride: CIOC-CH <sub>2</sub> -COCl ALLOW cyclic acid anhydride of propanedioic acid:  CH <sub>2</sub> O  C  CH <sub>2</sub> |
|          | type of polymer. polyamide ✓                |      | ALLOW Nylon or Kevlar DO NOT ALLOW polypeptide DO NOT ALLOW amide                                                                                                                                                                                                                   |
|          | Total                                       | 12   |                                                                                                                                                                                                                                                                                     |

| ( | Quest | ion  | Answer                        | Mark | Guidance                                                                                                                                                                                |
|---|-------|------|-------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)   |      | propane-1,2,3-triol ✓         | 1    | ALLOW absence of 'e' after 'propan' ALLOW 1,2,3-propanetriol  ALLOW absence of hyphens  1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 1 2 3 DO NOT ALLOW 123 |
| 2 | (b)   | (i)  | methanol OR ethanol AND       |      | BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae                                                             |
|   |       |      | renewable ✓                   | 1    | <b>ALLOW</b> easy/cheap to manufacture/produce as alternative for renewable/from plants/from fermentation/burns more easily/efficiently                                                 |
|   | (b)   | (ii) | equilibrium shifts to right ✓ | 1    | ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion  DO NOT ALLOW improves atom economy                    |

| ( | Questi | ion | Answer                                                                                                                                                              | Mark | Guidance                                                                                                                                                                                                                    |
|---|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (c)    |     | CH <sub>3</sub> CH <sub>2</sub> COOH + CH <sub>3</sub> CH <sub>2</sub> OH → CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub> + H <sub>2</sub> O ✓ |      | ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae                                                                              |
|   |        |     | $(CH_3CH_2CO)_2O + CH_3CH_2OH \rightarrow \\ CH_3CH_2COOCH_2CH_3 + \\ CH_3CH_2COOH$                                                                                 | 2    | ALLOW further esterification, <i>ie</i> (CH <sub>3</sub> CH <sub>2</sub> CO) <sub>2</sub> O + 2CH <sub>3</sub> CH <sub>2</sub> OH  → 2CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>2</sub> CH <sub>3</sub> + H <sub>2</sub> O |
|   |        |     |                                                                                                                                                                     |      | ALLOW linear formula for anhydride, ie                                                                                                                                                                                      |
|   |        |     |                                                                                                                                                                     |      | CH <sub>3</sub> CH <sub>2</sub> COOCOCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                        |
|   |        |     |                                                                                                                                                                     |      | If incorrect carboxylic acid/anhydride/alcohol is used, <b>ALLOW ECF</b> for second equation                                                                                                                                |

|   | Question |  | Answer                                                                                                        | Mark                                       | Guidance                                                                                                        |   |                                                                                                                                                              |
|---|----------|--|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (d)      |  | Α                                                                                                             | В                                          | С                                                                                                               |   | Mark A, B and C                                                                                                                                              |
|   |          |  | HO-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -COOH                                                    | $H_2C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ | O<br>  <br>O-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -C                                               |   | <ul> <li>independently ie</li> <li>A can be any of the alternatives in the 1st column</li> <li>B can be any of the alternatives in the 2nd column</li> </ul> |
|   |          |  | OR                                                                                                            | OR                                         | OR                                                                                                              |   | C can be any of the                                                                                                                                          |
|   |          |  | CH <sub>3</sub><br> <br> <br>HO—CH—CH <sub>2</sub> —COOH                                                      | H <sub>2</sub> C—C                         | CH <sub>3</sub> O<br>    <br>O—CH—CH <sub>2</sub> —C                                                            | 3 | alternatives in the 3rd column  ALLOW correct structural OR displayed OR skeletal formula                                                                    |
|   |          |  | OR                                                                                                            | OR                                         | OR                                                                                                              |   | ALLOW combination of                                                                                                                                         |
|   |          |  | C <sub>2</sub> H <sub>5</sub><br> <br> <br>  HO                                                               | $C_2H_5$ CH—C O                            | C₂H₅ O<br>                                                                                                      |   | formulae as long as unambiguous <b>DO NOT ALLOW</b> molecular formulae                                                                                       |
|   |          |  | OR                                                                                                            | OR                                         | OR                                                                                                              |   |                                                                                                                                                              |
|   |          |  | СН <sub>3</sub><br> <br>НО—СН <sub>2</sub> —СН—СООН                                                           | CH-C<br> <br>                              | CH <sub>3</sub> O                                                                                               |   | ALLOW correct names for A, B and C  For B accept diester For C,                                                                                              |
|   |          |  | OR                                                                                                            | OR                                         | OR                                                                                                              |   | IGNORE 'n' OR brackets                                                                                                                                       |
|   |          |  | $HO \longrightarrow COOH$ $CH_3$ $H_3C$ $CH_3$ |                                            | (even if wrong);  ALLOW solid side bonds  Minimum is one correct repeat unit. Polymer must be open at both ends |   |                                                                                                                                                              |
|   |          |  |                                                                                                               |                                            | Total                                                                                                           | 8 |                                                                                                                                                              |

|   | Questi | on | Answer                                                                                                                                                                                                                                                                                                    | Mark | Guidance                                                                                                                                                                                                                                                                                       |
|---|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)    |    | observation: silver <b>OR</b> Ag ✓  type of reaction: oxidation ✓  organic product:  H <sub>3</sub> C CH <sub>3</sub> OH  CH <sub>3</sub> C                                                                                                                                                               | 3    | ALLOW black OR grey  ALLOW redox  ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae  ALLOW carboxylate, -COO-                                                                                     |
| 3 | (b)    |    | 1 mark for curly arrow from H <sup>-</sup> to C of C=O ✓  1 mark for correct dipole on C=O  AND curly arrow from double bond to O <sup>δ-</sup> ✓  1 mark for correct intermediate with negative charge on O  AND curly arrow from O <sup>-</sup> to H of H–O–H  AND curly arrow from H–O to O of H–O–H ✓ | 4    | ALLOW mechanism showing curly arrows from lone pair on H <sup>-</sup> and O <sup>-</sup> of intermediate  Dipole not required on H–O–H DO NOT ALLOW incorrect dipole on H–O–H ALLOW 1 mark for correct intermediate with '–' charge on O AND curly arrow from O <sup>-</sup> to H <sup>+</sup> |
|   |        |    | 1 mark for correct <b>organic</b> product ✓                                                                                                                                                                                                                                                               |      | IGNORE missing OH <sup>-</sup> DO NOT ALLOW incorrect second product                                                                                                                                                                                                                           |

| Question          | Answer                                                                                                                                                                            | Mark      | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question<br>3 (c) | Answer  reagent: Br₂ ✓  observation: decolourised <b>OR</b> orange to colourless ✓  organic product: ✓  H <sub>3</sub> C  CH <sub>3</sub> Br  CH <sub>3</sub> Br  CH <sub>3</sub> | Mark<br>3 | DO NOT ALLOW ECF from incorrect reagent, eg 2,4-DNP  DO NOT ALLOW goes clear ALLOW red/orange/yellow/brown in any combination  ALLOW organic product from reaction of one of the double bonds only, ie  H <sub>3</sub> C  CH <sub>3</sub> H <sub>3</sub> C  CH <sub>3</sub> H <sub>3</sub> C  CH <sub>3</sub> CH <sub>3</sub> ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous                                      |
|                   | Total                                                                                                                                                                             | 10        | ALTERNATIVE reagents  For 1st mark, ALLOW H <sub>2</sub> OR Cl <sub>2</sub> OR I <sub>2</sub> OR HCl OR HBr OR HI OR H <sub>2</sub> O  For 2nd mark, there must be a statement of no change OR no observation or similar that implies there is no visible change EXCEPT for I <sub>2</sub> which has an observation of 'decolourised' OR brown to colourless  For 3rd mark, correct organic product must be shown that could be from reaction of both or one of the double bonds. |
|                   | Total                                                                                                                                                                             | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|   | Quest | ion  | Answer                                                                                                                                                                            | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (a)   | (i)  | CICH(CH <sub>3</sub> )COOH + 3NH <sub>3</sub> $\rightarrow$ H <sub>2</sub> NCH(CH <sub>3</sub> )COO <sup>-</sup> + NH <sub>4</sub> <sup>+</sup> + NH <sub>4</sub> CI $\checkmark$ | 1    | ALLOW use of two NH <sub>3</sub> : $CICH(CH_3)COOH + 2NH_3 \rightarrow H_2NCH(CH_3)COO^- + NH_4^+ + HCI$ ALLOW products as above OR H <sub>2</sub> NCH(CH <sub>3</sub> )COOH + NH <sub>4</sub> CI  ALLOW use of one NH <sub>3</sub> : $CICH(CH_3)COOH + NH_3 \rightarrow H_2NCH(CH_3)COO^- + H^+ + HCI$ ALLOW products as above OR H <sub>2</sub> NCH(CH <sub>3</sub> )COOH + HCI  For alternatives below, for NH <sub>4</sub> CI, ALLOW NH <sub>4</sub> +CI OR NH <sub>4</sub> + + CI  for HCI, ALLOW H+CI OR H+ + CI  for H <sub>2</sub> NCH(CH <sub>3</sub> )COO- + NH <sub>4</sub> + ALLOW H <sub>2</sub> NCH(CH <sub>3</sub> )COO-NH <sub>4</sub> + OR H <sub>2</sub> NCH(CH <sub>3</sub> )COONH <sub>4</sub> ALLOW R in equation in place of CH <sub>3</sub> (either or both sides) ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae |
|   | (a)   | (ii) | CH <sub>3</sub> CH <sub>3</sub>   HOOC—C—N—C—COOH H   H                                                                                                                           | 1    | ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous  ALLOW product from carboxylate ion as nucleophile:  CH <sub>3</sub> CH <sub>3</sub> H <sub>2</sub> N—C—COO—C—COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|   | Questi | ion  | Answer                                                                                                                                                                                                                                        | Mark  | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (b)    | (i)  | ON HO O                                                                                                                                                                                                                                       | 1     | DO NOT ALLOW any structure containing C OR H (except in OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | (b)    | (ii) | CH <sub>2</sub> COOH  H <sub>2</sub> N  C'''''COOH  HOOC'''''C  NH <sub>2</sub>                                                                                                                                                               | 2     | ALL bond linkages must be correct, eg the chiral C must be linked to the C of the COOH, the C of the CH <sub>2</sub> COOH and the N of the NH <sub>2</sub> (connectivity is being tested)  The 2nd mark is for the mirror image of an amino acid. This could be any amino acid EXCEPT glycine  DO NOT penalise connectivity more than once ALLOW R in equation in place of CH <sub>2</sub> COOH (either or both sides)  Each structure must have four central bonds, with at least two wedges, one in; one out |
|   |        |      |                                                                                                                                                                                                                                               |       | For bond into paper, accept:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | (c)    |      | Disadvantages  Any two from:  • (one stereoisomer might have harmful) side effects ✓  • reduces the (pharmacological) activity/effectiveness ✓  • cost OR difficulty in separating stereoisomers ✓                                            | 2 max | ANNOTATIONS MUST BE USED  ALLOW optical isomer OR enantiomers as alternative for stereoisomers  ALLOW a response that implies an increased dose                                                                                                                                                                                                                                                                                                                                                                |
|   |        |      | Synthesis of a single optical isomer  Any two from:  using enzymes or bacteria ✓  using a chiral catalyst OR transition metal complex/transition metal catalyst ✓  using chiral synthesis OR chiral starting material OR natural amino acid ✓ | 2 max | ALLOW biological catalyst  ALLOW 'chiral pool'  OR L-amino acids OR D-sugars                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        |      | Total                                                                                                                                                                                                                                         | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   | Quest | tion  | Answer                                                                  | Mark | Guidance                                                                                                                                                                                                                                                                |  |
|---|-------|-------|-------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 | (a)   | (i)   | Adsorption ✓ (onto the stationary phase)                                |      | ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once                                                                                                                                                                                               |  |
|   |       |       | Quality of Written Communication 'Adsorption' must be spelled correctly | 1    | DO NOT ALLOW anything that begins with ab                                                                                                                                                                                                                               |  |
|   | (a)   | (ii)  | 0.2 ✓                                                                   | 1    | ALLOW any value in the range 0.1 – 0.3 IGNORE significant figures DO NOT ALLOW fraction/percent as final answer                                                                                                                                                         |  |
|   | (a)   | (iii) | Spot may contain more than one compound/component ✓                     | 1    | ALLOW compounds have similar $R_f$ values/adsorptions OR compounds have not (fully) separated OR B is spread over a large region OR compounds are similar IGNORE retention times                                                                                        |  |
| 5 | (b)   | (i)   | GC separates the components/compounds  AND                              |      | ALLOW chromatography for GC ALLOW they have different retention times                                                                                                                                                                                                   |  |
|   |       |       | MS is compared to a database/reference ✓                                | 1    | ALLOW MS analyses compounds/gives structural information/gives different mass spectra ALLOW (uses) fragmentation patterns/fragments/peaks/parts of the compound DO NOT ALLOW MS identifies compounds (in question) DO NOT ALLOW molecular ion alone/M <sub>r</sub> etc. |  |
|   |       | (ii)  | nerol and geraniol AND                                                  |      | Compounds AND reason required for the mark                                                                                                                                                                                                                              |  |
|   |       |       | they are stereoisomers <b>OR</b> primary alcohols ✓                     | 1    | <b>ALLOW</b> they are <i>E</i> / <i>Z</i> isomers <b>OR</b> <i>cis-trans</i> isomers <b>ALLOW</b> straight-chain alcohols <b>OR</b> unsaturated alcohols                                                                                                                |  |
|   |       | (iii) | stereoisomers have the same structural formula  AND                     |      | BOTH points required for the mark                                                                                                                                                                                                                                       |  |
|   |       | (: )  | different 3D arrangements ✓                                             | 1    | ALLOW different arrangements in space                                                                                                                                                                                                                                   |  |
|   |       | (iv)  |                                                                         | 1    | Circle must include the correct C=C double bond <b>AND</b> must not extend further than the adjacent atoms in the main chain, ie limit is:                                                                                                                              |  |

| from 34 g myrcene:  mass = 34 × 156/136 = 39 (g)  × 156 ✓; ÷ 136 ✓  60% of 39 g = 39 × 60/100 = 23.4 (g) ✓  ALLOW final answer to 2 or more significant figures correctly rounded  Correct answer of 23.4 (g) with no working scores all 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Questi | ion | Answer                                                                                                                                                  | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALL THREE chiral centres required for 2 marks  ANY TWO chiral centres required for 1 mark  If more than three asterisks are shown, mark incorrect asterisk(s) first  ANNOTATIONS MUST BE USED  ALLOW amount of myrcene x 60/100  Correctly calculates 60% yield of menthol = 0.25 x 60/100 OR 0.15 (mol) \( \times \)  Correctly calculates mass of menthol = 0.15 x 156 = 23.4 (g) \( \times \)  Correctly calculates mass of menthol = 0.15 x 156 = 23.4 (g) \( \times \)  ALLOW amount of menthol x 156  ALLOW alternative approach based on reacting masses (using same ECF principles as above):  correctly calculates mass of myrcene that could be obtained from 34 g myrcene:  mass = 34 x 156/136 = 39 (g)  x 156 \( \times \); 136 \( \times \)  60% of 39 g = 39 x 60/100 = 23.4 (g) \( \times \)  ALLOW final answer to 2 or more significant figures correctly rounded  Correct answer of 23.4 (g) with no working scores all 3 marks |        |     |                                                                                                                                                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Correctly calculates amount of myrcene = 34/136 OR 0.25 (mol) \(  \)  Correctly calculates 60% yield of menthol = 0.25 \times 60/100 OR 0.15 (mol) \(  \)  Correctly calculates mass of menthol = 0.15 \times 156 = 23.4 (g) \(  \)  ALLOW amount of myrcene \( \times 60/100 \)  ALLOW amount of menthol \( \times 156 \)  ALLOW alternative approach based on reacting masses (using same ECF principles as above):  correctly calculates mass of myrcene that could be obtained from 34 g myrcene:  mass = 34 \times 156/136 = 39 (g) \times 156 \( \times \; \div 136 \( \times \)  ALLOW final answer to 2 or more significant figures correctly rounded  Correct answer of 23.4 (g) with no working scores all 3 marks                                                                                                                                                                                                                       |        | (v) | */                                                                                                                                                      | 2    | ANY TWO chiral centres required for 1 mark  If more than three asterisks are shown, mark incorrect asterisk(s) first                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 (c)  |     | = 34/136 <b>OR</b> 0.25 (mol) ✓  Correctly calculates 60% yield of menthol = 0.25 × 60/100 <b>OR</b> 0.15 (mol) ✓  Correctly calculates mass of menthol | 3    | <b>ALLOW</b> amount of myrcene × 60/100 <b>ALLOW</b> amount of menthol × 156 <b>ALLOW</b> alternative approach based on reacting masses (using same <b>ECF</b> principles as above):  correctly calculates mass of myrcene that could be obtained from 34 g myrcene:  mass = $34 \times 156/136 = 39$ (g) × $156 \checkmark$ ; ÷ $136 \checkmark$ 60% of $39 \text{ g} = 39 \times 60/100 = 23.4$ (g) $\checkmark$ <b>ALLOW</b> final answer to 2 or more significant figures correctly rounded  Correct answer of 23.4 (g) with no working scores all 3 |
| TUM IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |     | Total                                                                                                                                                   | 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|   | Questic | Answer                                                                                                                                                                                                                      | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | (a)     |                                                                                                                                                                                                                             |      | ANNOTATIONS MUST BE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|   |         | a singlet for position 2 OR a singlet because it has no adjacent H's✓ A triplet for positions 4 and 6 OR a triplet because it has 2 adjacent H's ✓ A quintet for position 5 OR a quintet because it has four adjacent H's ✓ | 3    | ALLOW a response that implies a single peak OR 'no splitting'  ALLOW a response that implies a splitting into three DO NOT ALLOW implications of more than one triplet  ALLOW 'pentet' OR a response that implies a splitting into five OR multiplet  ALLOW 1 mark for singlet and triplet and quintet/pentet/multiplet with no identification of protons  Any suggestion that the oxygens cause a splitting scores a maximum of 2 marks.  ■ All 3 remaining splitting patterns correct 2 marks.  ■ Any 2 correct 1 mark.  IF number labels for protons in diagram are not identified, ALLOW identification by chemical shifts for 2 marks max:  ■ singlet at 3.3–4.2 AND a triplet at 3.3–4.2 ✓  ■ quintet/pentet/multiplet at 0.7–2.0 ✓  Clear and unambiguous identification of the protons other than by position number should be credited, ie 'CH₂ between two oxygens' |  |
|   |         | Quality of Written Communication singlet OR triplet OR quintet OR pentet OR multiplet (see Guidance) must be spelled correctly at least once                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

F324 Mark Scheme January 2011

|   | Question | Answer                                                                                                                                                                   |  | Guidance                                                                                                                                                                                 |  |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | (b)      | ANY 5 marks plus correct structure (in box)                                                                                                                              |  | ANNOTATIONS MUST BE USED                                                                                                                                                                 |  |
|   |          | Molecular ion/M <sup>+</sup> peak at (m/z of) 106 ✓                                                                                                                      |  | ALLOW molecular mass OR relative molecular mass                                                                                                                                          |  |
|   |          | Fragment peak at 91 is C <sub>6</sub> H <sub>4</sub> −CH <sub>3</sub> <sup>+/</sup> C <sub>6</sub> H <sub>5</sub> −CH <sub>2</sub> <sup>+</sup> ✓                        |  | ALLOW C <sub>6</sub> H <sub>4</sub> –CH <sub>3</sub> /C <sub>6</sub> H <sub>5</sub> –CH <sub>2</sub> ALLOW peak at 91 represents loss of CH <sub>3</sub>                                 |  |
|   |          | Molecular formula is C <sub>8</sub> H <sub>10</sub> (or implied, <i>ie</i> any one of the structures below) ✓                                                            |  | ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW a correct name eg a dimethylbenzene                                 |  |
|   |          | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CC <sub>2</sub> H <sub>5</sub> CH <sub>3</sub> CC <sub>2</sub> H <sub>5</sub>                                            |  | ALL FOUR structures needed for 1 mark ALLOW correct names                                                                                                                                |  |
|   |          | <sup>13</sup> C NMR spectrum shows 5 C environments ✓  Peak near 20 is a C attached at another carbon, <b>C</b> –C <b>OR</b> peaks at ~125–140 for aromatic <b>C</b> s ✓ |  | ALLOW NMR spectrum shows five different types of carbon DO NOT ALLOW 'NMR spectrum has five peaks' – the mark is for realising what the peaks show, not for just describing the spectrum |  |

# Mark Scheme

January 2011

|   | Question |       | Answer                                                                                                                                              |                                             | Mark                                             | Guidance |                                       |
|---|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|----------|---------------------------------------|
| 6 | (b)      |       | Number of peaks for or structures:  Any 2 correct for 2 mark 1 correct for 1 mark 1 CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | rks √ √                                     | atched to  C <sub>2</sub> H <sub>5</sub> 6 peaks |          | ALLOW 'carbon environments' for peaks |
|   |          |       | Correct structure show                                                                                                                              | rn:<br>CH <sub>3</sub><br>CH <sub>3</sub> ✓ |                                                  | 6        |                                       |
|   |          | Total |                                                                                                                                                     |                                             |                                                  |          |                                       |

# OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

## **OCR Customer Contact Centre**

## 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

**OCR (Oxford Cambridge and RSA Examinations)** 

**Head office** 

Telephone: 01223 552552 Facsimile: 01223 552553

