CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Pag	ge 2	Mark Scheme	Syllabus	Paper
			IGCSE – May/June 2014	0620	32
1	(a)	A an	d E need both (1)		[1]
	(b)	D (1)			[1]
	(c)	C (1)			[1]
	(d)	B (1)			[1]
	(e)	F (1)			[1]
	(f)	E (1)			[1]
	(g)	C (1)			[1]
					[Total: 7]
2	(a)		substance/material/compound/element/mixture (bur energy or heat (1)	nt) to <u>produce/releas</u>	<u>e</u> [1]
		(ii) <i>i</i>	Any two from: coal coke peat petroleum/ crude oil refinery gas/LPG gasoline/petrol naptha kerosene/paraffin diesel (oil)/gas oil fuel oil propane butane		[2]
	(iii) \	wood/charcoal/animal dung/biomass/Uranium/U/pl	utonium/Pu (1)	[1]

i age o		900	IGCSE – May/June 2014	0620	32
			1003L - Iviay/Julie 2014	0020	JŁ
	(b)	(i)	any two from: water/steam/water vapour/H ₂ O (1) carbon dioxide/CO ₂ (1) carbon monoxide/CO (1)		[2]
		(ii)	any two from:		
			limited or finite resource/non-renewable/will run out/d	epleted (1)	
			greenhouse effect/gas(es)/climate change/(cause) gl	obal warming (1)	
			acid rain (1)		
			production of poisonous/toxic gases (1)		[2]
					[Total: 8]
3	(a)	(i)	pressure 150–300 <u>atmospheres/atm</u> (1)		
•	(α)	(')			
			temperature accept in range 370 to 470 °C (1)		
			iron (catalyst) (1)		
			balanced equation $N_2 + 3H_2 \Rightarrow 2NH_3$ (1)		
			equilibrium/reversible (1)		[5]
		(ii)	potassium/K (1)		
			phosphorus/P (1)		[2]
	(b)	(i)	burn fossil fuels/burn fuels containing sulfur/burn of sulfur/burn ores containing sulfur/roast metal sulfide (1)		
			sulfur dioxide/SO ₂ (formed) (1)		
			(form) sulfuric/H ₂ SO ₄ /sulfurous acid/H ₂ SO ₃ (1)		
			OR		
			nitrogen and oxygen (in air) react at high temperatu engines/lightning. (1)	res/in jet engines/car	
			(form) oxides of nitrogen (1)		
			(form) nitric acid/HNO ₃ /nitrous acid/HNO ₂ (1)		[3]

Mark Scheme

Syllabus

Paper

Page 3

		(ii)	any two from: calcium oxide/lime/quicklime/CaO (1) calcium hydroxide/Ca(OH) ₂ /lime/slaked lime/limewater (1) calcium carbonate/CaCO ₃ /limestone/chalk/marble (1)	[2]
			guidance: 'lime' can only be credited once.	
				[Total: 12]
4	(a)	(i)	butanoic/butyric acid (1)	
			CH ₃ CH ₂ COOH/C ₂ H ₅ CH ₂ COOH (1)	[2]
	((ii)	any three from:	
			(same) general formula (1)	
			(consecutive members) differ by CH ₂ (1)	
			same functional group (1)	
			common methods of preparation (1)	
			physical properties vary in predictable manner/show trends/gradually change	
			or example of a physical property variation i.e. melting point/boiling point/volatility (1)	[3]
	(b)	(i)	displayed formula of propan-1-ol, all bonds shown separately (1)	[1]
	((ii)	acidified (1)	
			potassium manganate (VII) /potassium permanganate/KMnO ₄ or potassium dichromate(VI)/K ₂ Cr ₂ O ₇ /potassium dichromate (1)	[2]
	(c)	(i)	zinc + propanoic acid \rightarrow zinc propanoate (+ hydrogen) (1)	[1]
	((ii)	calcium oxide + propanoic acid \rightarrow <u>calcium propanoate + water</u> (1)	[1]
	(iii)	$LiOH + CH3CH2 COOH \rightarrow \underline{CH3CH2COOLi + H2O} (1)$	[1]
	(d)	(i)	$\frac{concentration}{doubled.} \begin{tabular}{ll} \begin{tabular}{ll} concentration & \begin{tabular}{ll} of & \begin{tabular}{ll} concentration & \begin{tabular}{ll} of & \begin{tabular}{ll} A & \begin{tabular}{ll} concentration & \begin{tabular}{ll} of & \begin{tabular}{ll} A & \begin{tabular}{ll} concentration & \begin{tabular}{ll} of & \begin{tabular}{ll} concentration & $	
			less collisions or more collisions <u>in A</u> (than in C) (1)	[2]
	((ii)	(higher temperature in B particles/molecules/atoms) move faster/have more energy/more have E_a or (particles/molecules/atoms) in A move slower/have less energy/less have E_a (1)	
			more collisions or less collisions <u>in A</u> (than in B) (1)	[2]

Mark Scheme IGCSE – May/June 2014

Page 4

Syllabus 0620

Paper 32

	Page 5		j	Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2014	0620	32
	((iii) It (D) has strong (acid) and A has weak acid/(D) stronger/(D) ionises more/ (D) dissociates more or A is weaker/A ionises less/A dissociates less (1) 				
				o) has <u>higher concentration of hydrogen ions</u> entration of hydrogen ions (1)	or A has a lov	<u>ver</u>
			more	e collisions (in D) or fewer collisions <u>in A</u> (1)		[3]
						[Total: 18]
5	(a)	(i)	incoi (1)	mplete combustion or limited oxygen/less oxyger	n/not enough oxyg	en [1]
		(ii)	any	two from:		
			(forw	vard) reaction is endothermic (1)		
				temperature increases yield/favours forward reaction (1)	tion/shifts equilibri	mL
			faste	er reaction (rate) (1)		[2]
	((iii)	any	two from:		
			high	pressure reduces yield or favours LHS (1)		
				ause LHS has smaller volume or number of moles <i>(</i> as) ORA (1)	number of molecu	les
			(high	n pressure plant is) expensive/dangerous/explosion	n/leaks	[2]
5	(b)	hyd	lroger	and chlorine/ H_2 and Cl_2 (1)		
		sod	lium h	ydroxide/NaOH/Na ⁺ OH ⁻ (1)		
		2H⁺	+ 2e	$\rightarrow \ H_2/2H^{^+} \rightarrow \ H_2 \ -2e \ (1)$		
		2C1	$l^- \rightarrow 0$	$Cl_2 + 2e/2Cl^ 2e \rightarrow Cl_2$ (1)		
		Hyd	drogei	n/H ₂ /H/H ⁺ at cathode and chlorine/chloride/C <i>l</i> ₂ /C	Cl/Cl^- at anode (1)	[5]
5	(c)	ea	<u>ch</u> chl	orine 1 bond pair and 3 non-bond pair (1)		
		оху	gen a	tom 2 non-bond pairs and 2 bond pairs as double b	oond (1)	
		carl	bon a	tom 4 bond pairs including 2 bond pairs as double b	oond (1)	[3]
						[Total: 13]

	900	IGCSE – May/June 2014	0620	32
		1000L - Iviay/Julie 2014	0020	JŁ
(a)	any thre (it would number	d have) more than one or variable valency/oxid	lation state/oxidation	
	(metal/e	element/titanium/it has a) high density (1)		
	coloured	compounds/ions/solutions (1)		
	form cor	mplex (ions) (1)		
	(element	c/compound act as) catalyst (1)		[3]
(b)	ScF ₃ (1)			
	correct c	harges on <u>both</u> ions (1)		
	8 electro	ns around (each) fluoride (1)		[3]
(c)	name or	formula of strong acid and alkali (1)		
(0)				
	reacts w	ith or neutralises both acid and base or alkali (then a	amphoteric) (1)	
	it dissolv	es/soluble in both(acid and alkali) or form solutions	in both (1)	[3]
				[Total: 9]
(a)		vithout indicator/repeat using same volumes of accharcoal to remove indicator (1)	cid and alkali or use	
	evaporat	te/heat/warm/boil/leave in sun (1)		
		ost of the water has gone/some water is le ation point (1)	ft/saturation (point)/	
	leave/al	low to cool/allow to crystallise (1)		
		f crystals)/wash(with distilled water)/dry crystals in warm place/oven/windowsill (1)	with filter paper/dry	[5]
(b)	<u>0.062</u> (1)		
	0.031 (1)		
	3.97g (1	1)		
	55.4% (1			[4]

Mark Scheme

Syllabus

Paper

Page 6

6

7

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0620	32

- (c) (i) (to prove) <u>all</u> water driven off or evaporated or boiled/no water remains/to make salt anhydrous (1)
 - (ii) $m_1 m_2 = mass of water (1)$

(calculate) moles of water AND moles of hydrated or anhydrous salt (1)

1:1 ratio/should be equal (1)

[3]