

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY - CH2

SUMMER 2013 MARK SCHEME

Section A

Q.1	С					[1]
Q.2	В					[1]
Q.3	(a) Calcium chloride					[1]
	(b) Magnesium carbonate					[1]
	(c) Sodium sulfate					[1]
Q.4	Species Cl● NH₃ Classification Radical Nucleophile					
	(1 for each box)					[2]
Q.5	e.g. wound dressing/sterilising sprays/deodorant socks/ refrigerator surfaces/anti-perspirants					[1]
Q.6	Potassium and chlorine (1)					
	They have the largest electronegativity difference (1)					[2]

[1]

Section B

Q.7 (a) (i)

H H H H C C C C O C F

- (ii) Nickel / platinum / palladium [1]
- (iii) Potassium / sodium hydroxide (1) in ethanol and heat (1) [2]
- (iv) Elimination [1]
- (b) (i)

 H CH₃

 C C
 H
 H
 H
 H
 - (ii) M_r poly(propene) unit = 42 (1) Number of units = $\frac{1.05 \times 10^6}{42}$ = 25000 (1) [2]
- (c) (i) Percentage hydrogen = 4.6% (1)

Formula = C_2H_5Br (1) [3]

(ii) M_r of compound / number of atoms of any element in compound [1]

Total [12]

- **Q.8** (a) e.g. damages liver/ damages pancreas/causes cancer/causes skin disorders/ short-term effects (1)
 - e.g. more traffic accidents/violent behaviour/criminal behaviour (1) [2]
 - (b) (i) Nucleophilic substitution / hydrolysis (1)

$$H_7C_3 - C_3^{\delta^+} - C_3^{\delta^-} \longrightarrow H_7C_3 - C_3^{\delta^-} - OH + C_3^{\delta^-} \longrightarrow H_7C_3 - C_3^{\delta^-} - OH + C_3^{\delta^-}$$

Reactants:

Intermediate (1)

Polarisation (1)

(accept curly arrow to show

curly arrow (1)

C – CI breaking instead of intermediate)

(Incorrect starting material or product maximum 2 marks from 3 for mechanism)

- (ii) Peak at 650–800 cm⁻¹ due to C Cl bond will be gone (1) Peak at 2500–3500 cm⁻¹ due to O – H bond / 1000–1300 cm⁻¹ due to C – O bond will be present (1) [2]
- (c) (i) OH [1]
 - (ii) Structural / positional / chain [1]
 - (iii) Colour change from orange to green [1]
 - (iv) Concentrated sulfuric acid / aluminium oxide (1) CH₃CH₂CH₂CH → CH₃CH₂CHCH₂ + H₂O (1) [2]
- (d) (i) C F bond stronger than C Cl bond (1) C Cl bond breaks (in stratosphere) forming Cl● which reacts with ozone (1) [2]
 - (ii) Some CFCs still being used / CFCs take a very long time to reach the ozone layer / other substances deplete the ozone layer [1]

Total [16]

[4]

Q.9 (a) A mixture of (many) hydrocarbons / alkanes

[1]

(b) $C_4H_{10} + 6\frac{1}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$

[1]

(c) $109\frac{1}{2}^{\circ}$

[1]

(d) H₂O has 2 bonding and 2 lone pair of electrons (1)

CH₄ has 4 bonding pairs only (1)

Repulsion between lone pairs and bond pairs is greater than between bond pairs and bond pairs (1) [3]

QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate QWC [1]

- (e) (i) Butane is higher because it has more van der Waals' forces between molecules [1]
 - (ii) Regular array of metal ions surrounded by a 'sea' of delocalised valence electrons (1)

Strong attraction between the positive ions and the delocalised electrons (1) (Can be obtained from labelled diagrams)

Malleable because when a force is applied the layer of metal ions slide over each other forming a new shape (1)

Conduct electricity since under a potential difference the delocalised electrons flow / the delocalised electrons flow towards the positive potential

(1)

[4]

QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning QWC [1]

Total [13]

- Q.10 (a) (i) Chlorine gas lodine solid [1]
 - (ii) Chlorine brown/orange solution (1)
 lodine no change / no reaction (1)
 Cl₂ + 2KBr → Br₂ + 2KCl (1)
 (Accept ionic equation)

 [3]
 - (b) Oxygen loses electrons therefore oxidised / oxidation state changes from -2 to 0 therefore is oxidised (1)

Chlorine gains electrons therefore reduced / oxidation state changes from 0 to -1 therefore is reduced (1) [2]

(c) (i) Boiling temperatures increase as relative molecular mass increases / number of electrons increases / down group (1)

HF has a higher boiling point than expected (1) [2]

(ii) Group 7 hydrides contain more dipole–dipole forces as group descended
(1)
but HF contains hydrogen bonding between molecules (1)

Hydrogen bonds are stronger therefore HF's boiling temperature is greater / need more energy to break (1) [3]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter QWC [1]

(iii) HCl more polar than SiH₄ therefore intermolecular forces are stronger / dipole greater in HCl / Cl more electronegative than Si [1]

Total [13]

Q.11 (a) (i) $2Ca + O_2 \longrightarrow 2CaO$ [1]

Ca X O

(1)

forming Ca^{2+} and O^{2-} ions (1) [2]

(b) (i) $Ca(OH)_2$ [1]

(ii) 8-14 [1]

(c) $Ca^{2+}(aq) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$ [1]

(ii) Moles Mg = $\frac{0.503}{24.3}$ = 0.0207 (1) Moles HCl = 0.0414 (1) Volume HCl = $\frac{0.0414}{1.6}$ = 0.0259 dm³ (1) [3]

(iii) Volume $H_2 = 0.0207 \times 24 = 0.497 \text{ dm}^3$ [1]

(iv) Add aqueous silver nitrate (1)
White precipitate forms (1)

[2]

(e) Less reactive (1)

Electrons in beryllium more difficult to lose / ionisation energy is higher (1) [2]

(Need reason to get first mark but accept less reactive as reactivity increases down group / outer electron has less shielding etc. for 1 mark)

Total [16]