4737

Mark Scheme

June 2009

4737 Decision Mathematics 2

r		1		
1(a) (i)		B1	A correct bipartite graph	
	$ \begin{array}{c} D \bullet & J \\ E & K \end{array} $			[1]
(ii)	A ● F			
	B ●● G	B1	A second bipartite graph showing the incomplete matching correctly	
	$D \bullet J$ $E \bullet K$			
				[1]
(iii)	E = F - A = H - D = K	B1	This path in any reasonable form	
	Fiona = Egg and tomato $F = E$ Gwen = Beef and horseradish $G = B$ Helen = Avocado and bacon $H = A$ Jack = Chicken and stuffing $J = C$ Mr King = Duck and plum sauce $K = D$	B1	This complete matching	[2]
(iv)	Interchange Gwen and Jack F = E $G = C$ $H = A$ $J = B$ $K = D$	B1	This complete matching	[1]

Peach =	Jack]
Peach =								1
Orange								
Mandar Nectari						B1	Correct allocation	
Lemon								
Р	1	2	1	0	0			
\overline{O}	0	0	0	0	4	A1	Augmenting correctly	
M N	0 3	2	$\frac{1}{2}$	0	3		single step)	
L	2	0	1	2	0		augmenting (by more than 1 in a	
	F	G	H	J	K	M1	Substantially correct attempt at	
Augme								
Р	4	5	4	3	0			
0	0	0	0	0	1			
N	6	4	5	4	0			
$\frac{L}{M}$	0	2	4	0	0			
L	F 5	G 3	<u> </u>	<i>J</i> 5				
lines	F	C	Н	I	K			
Cross o	ut 0's u	sing thr	ee (min	1mum n	o. of)			
	~ •				~			
Р	4	5	4	3	0			
0	0	0	0	0	1	A1	Augmenting correctly	
N	6	4	5	4	0			ļ
M	0	2	1	0	0			ļ
L	5	3	4	5	0			
- ingine	F	G	Н	J	K	1111	augmenting	
Augme	-	0	5	-T		M1	Substantially correct attempt at	ļ
$\frac{D}{P}$	5	6	5	4	0			
N 0	0	5 0	6 0	5 0				
M	1 7	3	2	1 5	0			
L	6	4	5	6	0			
	F	G	Н	J	K			
Cross o					. of) lines			
		•						
P	5	6	5	4	0			
0	0	0	0	0	0	A1	cao	
N	7	5	6	5	0			
$\frac{L}{M}$	6 1	4 3	<u> </u>	<u>6</u> 1	0		reduce columns	
T	F	G	<u>Н</u> 5	<i>J</i> 6	<u>K</u> 0	M1	Substantially correct attempt to	
Reduce				-				
_								
Р	6	9	7	5	0			
0	1	3	2	1	0			
N	8	8	8	6	0		reduce rows	
M	2	6	4	2	0	M1	Substantially correct attempt to	
L	<i>F</i> 7	<i>G</i> 7	<u>Н</u> 7	<i>J</i> 7	<u>K</u>			

2 (i)	Stage	State	Action	Working	Suboptimal maxima	B1	Structure of table correct	
		0	0	7	7		structure of tuble contect	
	2	1	0	6	6	M1	Stage and state values correct	
		2	0	8	8			
		0	0	5+7=12 6+6=12	12	A1	Action values correct	[3]
			0	6 + 6 = 12 4 + 7 = 11	12	B1	Working backwards from stage 2	
	1	1	1	5 + 6 = 11			7, 6, 8 correct in suboptimal	
			2	6 + 8 = 14	14		maxima column for stage 2	
		2	0	10 + 7 = 17	17	M1	Working column substantially	
		2	1 2	9+6=15 6+8=14		A1	correct for stage 1 Sums correct for stage 1	[3]
			0	8 + 12 = 20		B1	Suboptima maxima values correct	[3]
	0	0	1	9 + 12 = 23			for stage 1	
			2	7 + 17 = 24	24	M1	Working column substantially	
							correct for stage 0	
						A1	Sums correct for stage 0	[3]
	Maximum route = $(0;0) - (1;2) - (2;0) - (3;0)$						Correct route from $(0; 0)$ to $(3; 0)$	[3]
	Weight				, , , ,	B1	24 cao	[2]
(**)		$0 \perp 1$		(7) 17	17			
(ii)	$A(\xi$		E(6)		<u> 17</u> L(7)	B1	Assigning A to N appropriately	
		F (9)	G(5)	M		M1	Substantially correct forward pass	
	010	9	10	16 18	24 24	A1	Forward pass correct	
	C((7) $\overline{(1)}$	0/ 50		V(8)	241		
						M1	Substantially correct backward pass Backward pass correct	
		/ /	K	(6) 15	5 16	A1	24 (cao)	
	Minimu	m com	aletion ti	ime - 24		B1	C, I, L (cao)	
	Minimum completion time = 24 Critical activities: <i>C</i> , <i>I</i> , <i>L</i>							[7]
(iii)	The crit	ical pat	h is the 1	maximum pa		M1	Same path is found in both	
				orm a contin	uous path	A1	Recognition of why the solutions	
	with no	slack, i	e the lon	igest path			are the same, in general	[2]
							Total =	20
							1 otur –	

3 (i)	For each pairing, the total of the points is 10. Subtracting 5 from each makes the total 0.	M1 A1	Sum of points is 10 So sum of scores is zero	
	Subtracting 5 from each makes the total 0.	AI		
	Eg 3 points and 7 points \Rightarrow scores of -2 and +2		A specific example earns M1 only	[2]
(ii)	W scores -1	B1	-1	[0]
	P has 6 points and W has 4 points	B1	6 and 4	[2]
(iii)	<i>W</i> is dominated by <i>Y</i> -1 < 1, -3 < -2 and 1 < 2	B1 B1	<i>Y</i> These three comparisons in any	
		21	form	[2]
(iv)	Collies			
	XYZrow minRovers P 2-13-1			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Determining row minima and column maxima, or equivalent	
	$col \qquad \frac{R}{2} \qquad \frac{1}{3} \qquad \frac{1}{3}$		containin maximu, or equivalent	
	max			
	Play-safe for Rovers is <i>P</i> Play-safes for Collies is <i>Y</i>	A1 A1	P Y	[3]
(v)	2p - 4(1-p) = 6p - 4	B1	6 <i>p</i> - 4 in simplified form	
(•)	Y gives 1 - $2p$			[2]
	Z gives 3p	B1	Both 1 -2 p and 3 p in any form	[2]
(vi)				
		B1	Their lines drawn correctly on a reasonable scale	
		M1	Solving the correct pair of	
	$6p-4=1-2p \Longrightarrow p=rac{5}{8}$	A1	equations or using graph correctly $\frac{5}{8}$, 0.625, cao	[3]
(vii)	Add 4 throughout matrix to make all values non-negative	B1	'Add 4', or new matrix written out or equivalent	
	On this augmented matrix, if Collies play X Rovers expect $6p_1 + 5p_2$;	B1	Relating to columns X , Y and Z	
	if Collies play Y Rovers expect $3p_1 + p_2 + 5p_3$; and if Collies play Z Rovers expect $7p_1 + 3p_2 + 3p_3$		respectively. Note: expressions are given in the question.	
	and in comes play 2 kovers expect $7p_1 + 3p_2 + 4p_3$		Siven in the question.	
	We want to maximise <i>M</i> where <i>M</i> only differs	B1	For each value of p we look at the	
	by a constant from <i>m</i> and, for each value of <i>p</i> , <i>m</i> is the minimum expected value.		minimum output, then we maximise these minima.	[3]
(*****)	-	D1		
(viii)	$p_3 = \frac{3}{8}$ $M = -\frac{1}{4}$	B1	cao	
	<i>m</i> – 4	B1	cao	[2]
			Total =	19

4 (i)	8+0+6+5+4	M1	8+0+6+5+4 or 23	
	= 23 gallons per minute	A1	23 with units	[2]
(ii)	At most 6 gallons per minute can enter A so	B1	Maximum into $A = 6$	
	there cannot be 7 gallons per minute leaving itAt most 7 gallons per minute can leave F so	B1	Maximum out of $F = 7$	
	there cannot be 10 gallons per minute entering			
	it.			[2]
(iii)	A diagram showing a flow with 12 through E	M1	Assume that blanks mean 0	
	Flow is feasible (upper capacities not exceeded)	M1		
	Nothing flows through A and D	A1		
	Maximum flow through $E = 12$ gallons per	B1	12	[4]
	minute			
(iv) a	If flows through A but not D its route must be $S - A - C - E$, but the flow through E is			
	already a maximum	B1	A correct explanation	[1]
b	S-(B)-C-D-F-T	M1	Follow through their part (iii)	
	1 gallon per minute	A1	1	
				[2]
(v)	Flow = $12 + 1 = 13$ gallons per minute			
	Cut through <i>ET</i> and <i>FT</i> or $\{S,A,B,C,D,E,F\}$,	B1	Identifying this cut in any way	
	{ <i>T</i> }			
	= 13 gallons per minute			
	Every cut forms a restriction	M 1	Use of max flow – min cut theorem	
	Every cut \geq every flow min cut \geq max flow	A1	min cut \geq max flow	
	This cut = this flow	B1	This cut = this flow (or having	
	so must be min cut and max flow		shown that both are 13)	[4]
(vi)	3 gallons per minute	B1	3	
	Must flow 6 along <i>ET</i> and 7 along <i>FT</i> . Can send 4 into <i>F</i> from <i>D</i> so only need to send	B1 B1	A correct explanation	
	9 through <i>E</i>	DI		[3]
(vii)	A diagram showing a flow of 13 without using	M1	May imply directions and assume	
	BE	A 1	that blanks mean 0	[0]
	Flow is feasible and only sends 9 through E	A1		[2]
			Total =	20