

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Core Mathematics C34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA038476 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

1 (anno er	Scheme	Marks
1. (a)	f(1.5) = -1.75, $f(2) = 8$	M1
	Sign change (and $f(x)$ is continuous) therefore there is a root α {lies in the interval [1.5, 2]}	A1 [2]
(b)	$x_1 = \left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$	M1
	$x_1 = 1.6198$, $x_1 = 1.6198$ cao	A1cao
	$x_2 = 1.612159576, x_3 = 1.612649754$ $x_2 = awrt 1.6122 and x_3 = awrt 1.6126$	A1
	$f(1, c_{12}, c_{12},$	[3]
(C)	f(1.01233) = -0.001100022087, f(1.01203) = 0.0004942043092 Sign change (and as f(x) is continuous) therefore a root α lies in the interval	
	Sign change (and as $1(x)$ is continuous) increase a root α nes in the interval $\begin{bmatrix} 1 & 61255 \\ -1 & 61265 \end{bmatrix} \rightarrow \alpha = 1.6126 (4 dp)$	M1A1
	$[1.01255, 1.01205] \rightarrow u = 1.0120 (+ up)$	[2]
		7
or f(1 "so re	(5) $f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval	
(b) M1:	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee. $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$ Or, can be implied by $x = awrt 1.6$	[[1.5, 2]]or
(b) M1: e.g. s	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = $ awrt 1.6	[[1.5, 2]]or
(b) M1: e.g. s A1:	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = $ awrt 1.6 $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark $x_1 = $ awrt 1.6122 and $x_2 = $ awrt 1.6126 and 1.6126408 would be acceptable for	[[1.5, 2]]or
(b) M1: e.g. s A1: A1:	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = $ awrt 1.6 $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark $x_2 = $ awrt 1.6122 and $x_3 = $ awrt 1.6126 (so e.g. 1.61216 and 1.6126498 would be acceptable her	e)
 (b) M1: e.g. s A1: A1: (c) M1: 	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = $ awrt 1.6 $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark $x_2 = $ awrt 1.6122 and $x_3 = $ awrt 1.6126 (so e.g. 1.61216 and 1.6126498 would be acceptable her Choose suitable interval for x , e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$.	e)
 (b) M1: e.g. s A1: A1: A1: A mir e.g. [1] 	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable her Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$. nority of candidate may choose a tighter range which should include 1.61262 (alpha to 5dp), 1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A r	e)
 (b) M1: e.g. s A1: A1: A1: A mir e.g. [1 are ma A1: 	sult shown" or qed or "tick" etc An attempt to substitute $x_0 = 1.5$ into the iterative formula ee $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable her Choose suitable interval for <i>x</i> , e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$. nority of candidate may choose a tighter range which should include 1.61262 (alpha to 5dp), 1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A r et. needs (i) both evaluations correct to 1 sf, (either rounded or truncated) e.g0.001 and 0.0005 or (ii) sign change stated and (iii)some form of conclusion which may be : $\Rightarrow \alpha = 1.6126$ or "so result shown" or qed or tick or equivalent	e) nark 0.0004

Question Number	Scheme	Marks			
2.	$\underline{3x^{2}} - \left(\underline{3y + 3x\frac{dy}{dx}}\right) - \underbrace{1 + 3y^{2}\frac{dy}{dx}}_{=} = \underline{0}$	M1 <u>A1</u> <u>M1</u>			
	$\left\{\frac{dy}{dx} = \frac{3x^2 - 3y - 1}{3x - 3y^2}\right\}$ not necessarily required.				
	At $(2, -1)$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{3(2)^2 - 3(-1) - 1}{3(2) - 3(-1)^2} \left\{ = \frac{14}{3} \right\}$	M1			
	T : $y1 = \frac{14}{3}(x - 2)$	dM1			
	T : $14x - 3y - 31 = 0$ or equivalent	Al			
		[6] 6			
	Notes				
1 st M1:	Differentiates implicitly to include either $\pm ky^2 \frac{dy}{dx}$ or $\pm 3x \frac{dy}{dx}$.				
(Ignore $\left(\frac{d}{d}\right)$	$\frac{y}{x} = \int at \text{ start and omission of } = 0 \text{ at end.})$				
1st A1: <i>x</i>	$x^3 \rightarrow \underline{3x^2}$ and $-x + y^3 - 11 \rightarrow -1 + 3y^2 \frac{dy}{dx}$ (so the -11 should have gone) and = 0 needed here	ere or implied			
by further	work. Ignore $\left(\frac{dy}{dx}\right)$ = at start.				
2 nd M1:	An attempt to apply the product rule: $-3xy \rightarrow -\left(3y + 3x\frac{dy}{dx}\right)$ or $\pm 3y \pm 3x\frac{dy}{dx}$ o.e.				
3 rd M1: 0	Correct method to collect two (not three) dy/dx terms and to evaluate the gradient at $x = 2$ $y = -$	1 (This stage			
may imply	the earlier "=0")				
4 ulv11; 1	11 In the second s				
Uses line equation with their $\frac{1}{3}$. May use $y = \frac{1}{3}x + c$ and attempt to evaluate c by substituting $x = 2$ and $y = -1$.					
(May be in	plied by correct answer)				
2 nd A1:	Any positive or negative whole number multiple of $14x - 3y - 31 = 0$ is acceptable. Must have =	= 0.			
N.B. If anyone attempts the question using $\frac{dx}{dy}$ instead of $\frac{dy}{dx}$, please send to review					

Question Number	Scheme		Marks			
	Apply quotient rule :	Or apply product rule to $y = \cos 2\theta (1 + \sin 2\theta)^{-1}$				
3.	$\left\{ u = \cos 2\theta \qquad v = 1 + \sin 2\theta \right\}$	$\left(\begin{array}{c} u = \cos 2\theta \\ v = (1 + \sin 2\theta)^{-1} \end{array} \right)$				
	$\left\{ \frac{\mathrm{d}u}{\mathrm{d}\theta} = -2\sin 2\theta \qquad \frac{\mathrm{d}v}{\mathrm{d}\theta} = 2\cos 2\theta \right\}$	$\begin{cases} \frac{du}{d\theta} = -2\sin 2\theta & \frac{dv}{d\theta} = -2\cos 2\theta (1+\sin 2\theta)^{-2} \end{cases}$				
	$\frac{dy}{d\theta} = \frac{-2\sin 2\theta (1+\sin 2\theta) - 2\cos^2 2\theta}{(1+\sin 2\theta)^2}$	$-2(1+\sin 2\theta)^{-1}\sin 2\theta-2\cos^2 2\theta(1+\sin 2\theta)^{-2}$	M1 A1			
	$= \frac{-2\sin 2\theta - 2\sin^2 2\theta - 2\cos^2 2\theta}{(1 + \sin 2\theta)^2}$	$= (1 + \sin 2\theta)^{-2} \{-2\sin 2\theta - 2\sin^2 2\theta - 2\cos^2 2\theta\}$				
	$= \frac{-2\sin 2\theta - 2}{(1 + \sin 2\theta)^2}$	$= (1 + \sin 2\theta)^{-2} \{-2\sin 2\theta - 2\}$	M1			
	$= \frac{-2(1+\sin 2\theta)}{(1+\sin 2\theta)^2}$	$=\frac{-2}{1-1-1-2}$	A1 cso			
	$(1+\sin 2\theta)^2$	$1 + \sin 2\theta$	ГЛ ГЛ			
			[4. 			
	Notes					
M1: Appl	ies the Quotient rule, a form of which appea	ars in the formula book, to $\frac{\cos 2\theta}{1 + \sin 2\theta}$				
If the form	ula is quoted it must be correct. There must h	ave been some attempt to differentiate both term	s.			
If the rule i	is not quoted nor implied by their working, m	eaning that terms are written out				
$u = \cos 2\theta$	θ , $v = 1 + \sin 2\theta$, $u' =, v' =$ followed by the	heir $\frac{vu'-uv'}{2}$, then only accept answers of the fo	orm			
$(1 + \sin 2\theta)$	$A \sin 2\theta = \cos 2\theta \times (B \cos 2\theta)$	v^2				
$\frac{(1+\sin 2\theta)}{2\theta}$	$\frac{(1+\sin 2\theta)^2}{(1+\sin 2\theta)^2}$ where A and	B are constant (could be 1) Condone "invisible"	··			
brackets fo	(1+ sin 20) or the M mark. If double angle formulae are us	sed give marks for correct work.				
Alternativ	rely applies the product rule with $u = \cos 2\theta$	$\theta, v = (1 + \sin 2\theta)^{-1}$				
If the form If the rule i	ula is quoted it must be correct. There must h is not quoted nor implied by their working, m	ave been some attempt to differentiate both term eaning that terms are written out	s.			
$u = \cos 2\theta$	$\theta, v = (1 + \sin 2\theta)^{-1}, u' =, v' =$ followed by	by their $vu'+uv'$,				
then only a	accept answers of the form $(1 + \sin 2\theta)^{-1} \times As$	$\ln 2\theta \pm \cos 2\theta \times (1 + \sin 2\theta)^{-2} \times B \cos 2\theta.$				
Condone "	invisible brackets" for the M. If double angle	formulae are used give marks for correct work.				
A1: Any f	ully correct (unsimplified) form of $\frac{dy}{d\theta}$ If do	uble angle formulae are used give marks for corr	ect work.			
Accept ver	sions of $\frac{dy}{d\theta} = \frac{-2\sin 2\theta (1 + \sin 2\theta) - 2\cos^2 \theta}{(1 + \sin 2\theta)^2}$	$\frac{22\theta}{2}$ for use of the quotient rule or versions of				
$\frac{\mathrm{d}y}{\mathrm{d}\theta} = (1$	$+\sin 2\theta$) ⁻¹ ×-2sin 2 θ +cos 2 θ ×(-1)×(1+sin	$(n 2\theta)^{-2} \times 2\cos 2\theta$ for use of the product rule.				
M1: Appl	ies $\sin^2 2\theta + \cos^2 2\theta \equiv 1$ or $-2\sin^2 2\theta - 2c$	$\cos^2 2\theta \rightarrow -2$ correctly to eliminate squared to	rig.			
terms from	n the numerator to obtain an expression of t	the form $k \sin 2\theta + \lambda$ where k and λ are constant	nts			
(including	1) If double angle formulae have been used g	give marks only if correct work leads to answer in	n			
A1: Need	to see factorisation of numerator then answ	wer, which is cso				
	-2 or a and $z = 2$ with	no provious errors				
$1 = \frac{1}{1 + \sin 2\theta}$ or $\frac{1}{1 + \sin 2\theta}$ and $a = -2$, with no previous errors						

Question Number	Scheme	Marks
	$\pm \lambda (2x+3)^{13}$	M1
4. (a)	$\left\{ \int (2x+3)^{12} dx \right\} = \frac{(2x+3)^{2}}{(13)(2)} \left\{ + c \right\} \qquad \qquad \frac{(2x+3)^{13}}{(13)(2)} \left\{ + c \right\} (\text{Ignore } '+c')$	A1
(b)	$\left\{ \int \frac{5x}{1+x^2} dt \right\} = \frac{5}{2} \ln(4x^2 + 1) \left\{ +c \right\} \text{ or } \frac{5}{2} \ln(x^2 + \frac{1}{4}) \left\{ +k \right\}$	[2] M1
	$\begin{bmatrix} J 4x^2 + 1 \end{bmatrix}$ 8 8 8 9 9 8	A1 [2]
	Notes	4
(a) M1 :	Gives $\pm \lambda (2x+3)^{13}$ where λ is a constant or $\pm \mu (x+\frac{3}{2})^{13}$	
A1:	Coefficient does not need to be simplified so is awarded for $\frac{(2x+3)^{13}}{(13)(2)}$ or for $\frac{2^{12}}{13}(x+\frac{3}{2})^{13}$ i.e.	2.
$\frac{4096}{13}$	$(x + \frac{3}{2})^{13}$	
N.B. If	Ignore subsequent errors and condone lack of constant c a binomial expansion is attempted, then it needs all thirteen terms to be correctly integrated for M	1A1
(b) M1 :	Gives $\pm \mu \ln(4x^2 + 1)$ where μ is a constant or $\pm \mu \ln(x^2 + \frac{1}{4})$ or indeed $\pm \mu \ln(k(4x^2 + 1))$	
	May also be awarded for $\frac{5}{8}\ln(4x+1)$ or $\frac{5}{8}\ln(x^2+1)$, where coefficient 5/8 is correct and the	ere is a slip
	writing down the bracket.	
It may	also be given for $\pm \mu \ln(u)$ where u is clearly defined as $(4x^2 + 1)$ or equivalent substitutions such	as
$\pm \mu \ln($	$(4u+1)$ where $u = x^2$	
A1:	$\frac{5}{8}\ln(4x^2+1) \text{ or } \frac{5}{8}\ln(x^2+\frac{1}{4}) \text{ o.e. The modulus sign is not needed but allow } \frac{5}{8}\ln\left 4x^2+1\right $	
	Also allow $0.625\ln(4x^2 + 1)$ and condone lack of constant <i>c</i>	
N.B.	$\frac{5}{8}$ ln 4x ² + 1 with no bracket can be awarded M1A0	

Question Number	Scheme	Marks				
5.	$\left(8+27x^3\right)^{\frac{1}{3}} = \underline{\left(8\right)^{\frac{1}{3}}} \left(1+\frac{27x^3}{8}\right)^{\frac{1}{3}} = \underline{2}\left(1+\frac{27x^3}{8}\right)^{\frac{1}{3}} \qquad \underline{\left(8\right)^{\frac{1}{3}}} \text{ or } \underline{2}$	<u>B1</u>				
	$= \{2\} \left[1 + \left(\frac{1}{3}\right) \left(kx^{3}\right) + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right)}{2!} \left(kx^{3}\right)^{2} + \dots \right]$	M1 A1				
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)\left(\frac{27x^3}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{27x^3}{8}\right)^2 + \dots\right]$					
	$= 2\left[1 + \frac{9}{8}x^3; -\frac{81}{64}x^6 + \dots\right]$					
	$= 2 + \frac{9}{4}x^3; -\frac{81}{32}x^6 + \dots$	A1; A1				
Method 2	$\left\{ \left(8 + 27x^3\right)^{\frac{1}{3}} \right\} = \left(8\right)^{\frac{1}{3}} + \left(\frac{1}{3}\right)\left(8\right)^{-\frac{2}{3}}\left(27x^3\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(8\right)^{-\frac{5}{3}}\left(27x^3\right)^2$	[5]				
	$(8)^{\frac{1}{3}}$ or 2	B1				
	Any two of three (un-simplified or simplified) terms correct	M1				
	All three (un-simplified or simplified) terms correct. 9 - 81 - 81	A1				
	$= 2 + \frac{7}{4}x^3; -\frac{31}{32}x^6 + \dots$	A1; A1				
		[5] 5				
Mathad 1.	Notes					
B1: $(8)^{\frac{1}{3}}$ o	r 2 outside brackets then is wor $(8)^{\frac{1}{3}}$ or 2 as candidate's constant term in their binomial expansion	on.				
— <u> </u>	and $(+ kx^3)^{\frac{1}{3}}$ to give any 2 terms out of 3 terms correct for their k simplified or un-simplified					
Eg:	$1 + \left(\frac{1}{3}\right)\left(kx^{3}\right) \text{ or } \left(\frac{1}{3}\right)\left(kx^{3}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{21}\left(kx^{3}\right)^{2} \text{ or } 1 + \dots + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{21}\left(kx^{3}\right)^{2} \text{ [Allow } \left(\frac{1}{3}-1\right) \text{ for } \left(1$	$(-\frac{2}{3})]$				
where	e $k \neq 1$ are acceptable for M1. Allow omission of brackets. [k will usually be 27, 27/8 or 27/2]					
A1: A corr	ect simplified or un-simplified $1 + \left(\frac{1}{3}\right)\left(kx^3\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(kx^3\right)^2$ expansion with consistent $\left(kx^3\right)$ {or	(kx) - for				
special case	e only}. Note that $k \neq 1$. The bracketing must be correct and now need all three terms correct for	r their <i>k</i> .				
A1: $2 + \frac{9}{4}$	x^3 - allow $2 + 2.25 x^3$ or $2 + 2\frac{1}{4}x^3$					
A1: $-\frac{81}{32}$	A1: $-\frac{81}{32}x^6$ allow $-2.53125x^6$ or $-2\frac{17}{32}x^6$ (Ignore extra terms of higher power)					
Method 2:						
B1: $(8)^{\overline{3}}$ of M1: A rest for a set of the se	·2					
MI: Any t A1: All th recov	wo of three (un-simplified or simplified) terms correct – condone missing brackets ree (un-simplified or simplified) terms correct. The bracketing must be correct but it is acceptable er this mark following "invisible" brackets.	e for them to				
A1A1: as Special cas	above. e (either method) uses x instead of x^3 throughout to obtain = $2 + \frac{9}{2}x$: $-\frac{81}{22}x^2 + \dots$ gets B1M	1A1A0A0				
Spooral cas	$= 2 + \frac{1}{4}x, 32x + \dots$					

Question Number	Scheme	Marks
6. (a)	$\frac{5-4x}{(2x-1)(x+1)} \equiv \frac{A}{(2x-1)} + \frac{B}{(x+1)}$ so $5-4x \equiv A(x+1) + B(2x-1)$	B1
	Let $x = -1$, $9 = B(-3) \implies B =$ Let $x = \frac{1}{2}$, $3 = A\left(\frac{3}{2}\right) \implies A =$	M1
	A = 2 and B = -3 or $\left\{ \frac{5-4x}{(2x-1)(x+1)} \equiv \frac{2}{(2x-1)} - \frac{3}{(x+1)} \right\}$	A1
(b) (i), (ii)	$\int \frac{1}{y} \mathrm{d}y = \int \frac{5 - 4x}{(2x - 1)(x + 1)} \mathrm{d}x$	[3] B1
	$= \int \frac{2}{(2x-1)} - \frac{3}{(x+1)} dx = C \ln(2x-1) + D \ln(x+1)$	M1
	$=\frac{2}{2}\ln(2x-1) - 3\ln(x+1)$	A1ft
	$\ln y = \ln(2x - 1) - 3\ln(x + 1) + c$	A1
Method 1 for (ii)	$\ln 4 = \ln(2(2) - 1) - 3\ln(2 + 1) + c \implies c = \{\ln 36\}$	M1
	$\ln y = \ln(2x-1) - 3\ln(x+1) + \ln 36 \text{so } \ln y = \ln\left(\frac{36(2x-1)}{(x+1)^3}\right) \text{ So } y = \frac{36(2x-1)}{(x+1)^3}$	M1 A1 [7]
Method 2 for (ii)	Solution as Method 1 up to $\ln y = \ln(2x-1) - 3\ln(x+1) + c$ so first four marks as before	B1M1A1A1
	Writes $y = \frac{A(2x-1)}{(x+1)^3}$ as general solution which would earn the 3 rd M1 mark.	M1
	Then may substitute to find their constant A, which would earn the 2^{nd} M1 mark.	M1
	Then A1 for $y = \frac{36(2x-1)}{(x+1)^3}$ as before.	A1
		[7] 10

Notes						
(a) B1: Forming the linear identity (this may be implied).						
Note : A & B are not assigned in this question – so other letters may be used						
M1 : A valid method to find the value of one of either their <i>A</i> or their <i>B</i> .						
A1: $A = 2$ and $B = -3$ (This is sufficient without rewriting answer provided it is clear what A and B are)						
$\begin{pmatrix} 5-4r \end{pmatrix}$ 2 3						
Note: In part (a), $\left\{\frac{3-4\pi}{(2\pi-1)(\pi+1)} \equiv \right\} = \left\{\frac{2}{(2\pi-1)} - \frac{3}{(\pi+1)}\right\}$, from no working, is B1M1A1 (cover-up rule).						
(2x-1)(x+1) $(2x-1)$ $(x+1)$						
(b) You can mark parts (b)(1) and (b)(11) together.						
(1) B1 : Separates variables as shown. (Can be implied.) Need both sides correct, but condone missing integral signs.						
MI: Uses partial fractions on RHS and obtains two log terms after integration. The coefficients may be wrong e.g.						
$2 \ln (2x - 1)$ or may follow their wrong partial fractions. Ignore LHS for this mark.						
Alft: RHS correct integration for their partial fractions – do not need LHS nor $+c$ for this mark						
A1: All three terms correct (LHS and RHS) including $+c$.						
(ii) M1: Substitutes $y = 4$ and $x = 2$ into their general solution with a constant of integration to obtain $c =$.						
M1: A fully correct method of removing the logs – must have a constant of integration which must be treated						
Correctly. Must have had $\ln y = \dots$ earlier						
36(2x-1) inv						
A1: $y = \frac{1}{(x+1)^3}$ isw.						
NB If Method 2 is used the third method mark is earned at the end of part (i) then the second method mark is earned						
when the values are substituted.						
Special case1: A common error using method 2:						
(2x-1) (3) (3)						
$y = \frac{x}{(x+1)^3} + A$, then $4 = \frac{x}{(3)^3} + A$ so $A =$ would earn M1 (substitution); M0 (not fully correct removing logs); A0						
$(\lambda + 1)$ (3)						
Snecial case?: A possible error using method 1 or ?:						
y = (2x - 1) - 3(x + 1) + 4 then $4 - 3 - 9 + 4$ so $4 -$ would earn M0 (too had an error): M0 (not fully correct removing						
$y = (2x - 1)^{-3}(x + 1) + 11$, then $4 = 3 - 7 + 14$ so $A =$ would call into (100 bad an error), into (not fully contect removing						
logs); AU						
1.e. MUMUAU						
If there is no constant of integration they are likely to lose the last four marks						
II mere is no constant of integration mey are likely to lose the last rout marks.						

Quastion	Saham		
Number	Schem		Marks
7. (a)	Method 1	Method 2	
(4)	$y = \frac{3x-5}{x+1}$	$y = 3 - \frac{8}{x+1}$	
	$y(x+1) = 3x - 5 \Longrightarrow xy + y = 3x - 5$	$\frac{8}{x+1} = 3 - y$ so $x+1 = \frac{8}{3-y}$	M1
	$y + 5 = 3x - xy \implies y + 5 = x(3 - y)$	8	
	$\Rightarrow \frac{y+5}{3-y} = x$	$x = \frac{1}{3 - y} - 1$	M1
	Hence $(f^{-1}(x)) = \frac{x+5}{3-x}$ $(x \in \Box, x \neq 3)$	Hence $(f^{-1}(x)) = \frac{8}{3-x} - 1$ $(x \in \Box, x \neq 3)$	A1 oe
			[3]
(b)	$ff(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x-5}\right) - 1}$	$ff(x) = 3 - \frac{8}{3 - \frac{8}{x+1} + 1}$	M1 A1
	$\left(\frac{1}{x+1}\right) + 1$		
	$=\frac{\frac{5(3x-5)-5(x+1)}{x+1}}{\frac{(3x-5)+(x+1)}{x+1}}$	$ff(x) = 3 - \frac{8(x+1)}{4x-4}$	M1
	$=\frac{9x-15-5x-5}{3x-5+x+1}=\frac{4x-20}{4x-4}$		
	$=\frac{x-5}{x-1}$ (note that $a = -5$.)	$=\frac{x-5}{x-1}$	A1
		2	[4]
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2) - 5''}{-2+1} = 11 \text{ or su}$	ubstitute 2 into $fg(x) = \frac{3(x^2 - 3x) - 5}{x^2 - 3x + 1}$;= 11	M1; A1
			[2]
(a)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{min} = -3$	2.25	M1
	Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5)$	(0) = 25 - 15 = 10	BI
	$\frac{-2.25 \leqslant g(x) \leqslant 10}{-2.25 \leqslant y \leqslant 10} \text{ or } \frac{-2.25 \leqslant y \leqslant 10}{-2.25 \leqslant y \leqslant 10}$		Al
			[3] 12

Question Number	Scheme	Marks
8.	$\frac{\mathrm{d}V}{\mathrm{d}t} = 250$	
	$\left\{ V = \frac{4}{3}\pi r^3 \implies \right\} \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1
	$V = 12000 \Rightarrow 12000 = \frac{4}{3}\pi r^3 \Rightarrow r = \sqrt[3]{\frac{9000}{\pi}} (= 14.202480)$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}t} \left\{ = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \right\} = \frac{1}{4\pi r^2} \times 250$	M1
	When $r = \sqrt[3]{\frac{9000}{\pi}}, \frac{dr}{dt} = \frac{250}{4\pi \left(\sqrt[3]{\frac{9000}{\pi}}\right)^2}$	dM1
	So, $\frac{dr}{dt} = 0.0986283(cm s^{-1})$ awrt 0.099	A1
		[5
	Notes	
B1 :	$\frac{dV}{dr} = 4\pi r^2$. This may be stated or used and need not be simplified	
Applie	s $12000 = \frac{4}{3}\pi r^3$ and rearranges to find <i>r</i> using division then cube root with accurate algebra	
May stat	e $r = \sqrt[3]{\frac{3V}{4\pi}}$ then substitute $V = 12000$ later which is equivalent. r does not need to be evaluated	
M1:	Uses chain rule correctly so $\frac{1}{\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}r}\right)} \times 250$	
dM1: S	ubstitutes their <i>r</i> correctly into their equation for $\frac{dr}{dt}$ This depends on the previous method mark	X
A1:	awrt 0.099 (Units may be ignored) If this answer is seen, then award A1 and isw.	
	Premature approximation usually results in all marks being earned prior to this one.	

Question Number	Scheme						Marks	
	x	4	5	6	7	8	9	
9. (a)	у	e ²	$e^{\sqrt{5}}$	$e^{\sqrt{6}}$	$e^{\sqrt{7}}$	$e^{\sqrt{8}}$	e ³	M1
		7.389056	9.356469	11.582435	14.094030	16.918828	20.085536	
			$\frac{1}{2} \times 1 \times \{\dots,\dots\}$	}				B1 oe
			2					
	$\frac{1}{-\times 1\times}$	$\left\{ e^2 + e^3 + 2 \right\}$	$e^{\sqrt{5}} + e^{\sqrt{6}} + e^{\sqrt{7}}$	$\left\{ + e^{\sqrt{8}} \right\} =$	$\frac{1}{2}(27.4745930)$	2 + 103.9035	526)}	M1
	2	((<u> </u>	2 `		.)	
	= 65.6	890595 = 65	5.69 (2 dp)					A1
	Special	case (s.c.) Us	tes $h = 5/4$ with	h 5 ordinates gi	ving answer 65	5.76 – award M	0B0M1A1(s.c.)	[4]
	See note below							
(b)	$\left\{ u = \sqrt{x} \Rightarrow \right\} \frac{du}{dx} = \frac{1}{2} x^{-\frac{1}{2}} \text{ or } \frac{dx}{du} = 2u$							
	$\int \int e^{\sqrt{x}} dx = \int e^{u} 2u du$							M1 A1
	$= \{2\} \left(u e^{u} - \int e^{u} du \right)$							M1
	$= \{2\} \left(u e^u - e^u \right)$							
	$\left[2\left(ue^{u}\right)\right]$	$\left(-e^{u}\right)\right]_{2}^{3}=2\left(-e^{u}\right)$	$3\mathrm{e}^3-\mathrm{e}^3\Big)-2\Big(2$	$2e^2 - e^2$				ddM1
	$\frac{1}{4e^3 - 2e^2}$ or $\frac{1}{2e^2(2e-1)}$ etc.							A1
								[7]
								11

				Note	s		
(a)	 M1: Finds y for x = 4, 5, 6, 7, 8 and 9. Need six y values for this mark. May leave as on middle row of table – give mark if correct unsimplified answers given, then isw if errors appear later. If given as decimals only, without prior expressions, need to be accurate to 2 significant figures.(Allow one slip) May not appear as table, but only in trapezium rule. B1: Outside brackets ¹/₂×1 or ¹/₂ or h = 1 stated. This is independent of the method marks 						
	M1: For st	ructure of $\{\dots$	} ft tl	neir y values ar	nd allow for 5 o	r 6 y values so	may follow wrong h or
	table which	h has x from 5	to 9 or from 4	to 8 NB {4+9	9+2(5+6+7+8)}	is M0	
	A1: 65.69	N.B. Wrong	brackets e.g.	$\frac{1}{2} \times 1 \times (e^2 + e^3)$	$+2\left(e^{\sqrt{5}}+e^{\sqrt{6}}\right)$	$+ e^{\sqrt{7}} + e^{\sqrt{8}}$) is	M0 unless followed by
	correct ans	wer 65.69 whi	ich implies M1	A1			
Spec	ial case: use	es five ordinate	es (i.e. four stri	ips)			
1	<u>x</u>	4	5.25	6.5	7.75	9	
	у	e ²	$e^{\sqrt{5.25}}$	$e^{\sqrt{6.5}}$	$e^{\sqrt{7.75}}$	e ³	
		7.389056	9.887663	12.800826	16.181719	20.085536	
Thei Givi	ng $\frac{1}{2} \times \frac{5}{4} \times \frac{5}{4}$	$\left\{e^2 + e^3 + 2\left(e^2\right)\right\}$	$\frac{1}{2} \times \frac{5}{4} \times \{\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,$	$\left\{ e^{\sqrt{7.75}} \right\} = 65.7$	6		
This	complete m	nethod for spec	cial case earns	M0 B0 M1 A1	i.e. 2/4		
(b)	B1 : States M1 : Obta	or uses $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}$	$\frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{dx}{du}$	$= 2u$ t value λ	A1: Obta	ins $2\int u e^{u} du$	
	M1 : An attempt at integration by parts in the right direction on λue^{u} . This mark is implied by the correct answer. There is no need for limits. If the rule is quoted it must be correct. A version of the rule appears in the						
	formula bo	oklet. Accept	for this mark	expressions of	the form $\int u e^{u}$	$du = ue^{u} - \int e^{u} dt$	1 <i>u</i>
d	A1 : $\lambda u e^{u}$ dM1 : Subst (Allow one A1 : Obtair	$ \rightarrow \lambda u e^{u} - \lambda e^{u}$ itutes limits of slip) This man as $4e^{3} - 2e^{2}$ or	^{<i>u</i>} . (Candidates 3 and 2 in <i>u</i> (ck depends on r $2e^{2}(2e-1)$	just quoting th or 9 and 4 in x) both previous n with terms colle	is answer earn in their integr nethod marks h ected. If then gi	M1A1) r and and subtra aving been ear iven as a decim	acts the correct way round. ned aal isw.

Question Number	Scheme					
10. (a)	$A = B \Longrightarrow \sin 2A = \frac{\sin(A+A)}{\sin A\cos A} = \frac{\sin A\cos A + \cos A\sin A}{\cos A} or \frac{\sin A\cos A + \sin A\cos A}{\sin A\cos A}$					
	Hence, $\sin 2A = 2\sin A \cos A$ (as required) *	A1 *				
	Way 1A:	[2]				
(b)	$\left\{ y = \ln\left[\tan\left(\frac{1}{2}x\right)\right] \Longrightarrow \right\} \frac{dy}{dx} = \frac{\frac{1}{2}\sec^{2}\left(\frac{1}{2}x\right)}{\tan\left(\frac{1}{2}x\right)} \qquad \qquad$	M1 A1				
	$= \frac{1}{2\tan(\frac{1}{2}x)\cos^{2}(\frac{1}{2}x)} = \frac{1}{\frac{2\sin(\frac{1}{2}x)}{\cos(\frac{1}{2}x)} \cdot \frac{\cos^{2}(\frac{1}{2}x)}{1}} = \frac{1+\tan^{2}(\frac{1}{2}x)}{2\tan(\frac{1}{2}x)} = \frac{\cos^{2}(\frac{1}{2}x)+\sin^{2}(\frac{1}{2}x)}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)}$	dM1				
	$= \frac{1}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)} = \frac{1}{\sin x} = \csc x * \qquad = \frac{1}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)} = \frac{1}{\sin x} = \csc x *$	A1 * [4]				
	Way 2: $\left\{ y = \ln\left[\sin\left(\frac{1}{2}x\right)\right] - \ln\left[\cos\left(\frac{1}{2}x\right)\right] \Rightarrow \right\} \frac{dy}{dx} = \frac{\frac{1}{2}\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{-\frac{1}{2}\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$	M1 A1				
	$= \frac{\cos^2\left(\frac{1}{2}x\right) + \sin^2\left(\frac{1}{2}x\right)}{2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right)}; = \frac{1}{\sin x} = \csc x$	M1;A1 [4]				
	Way3: quotes $\int \csc x dx = \ln(\tan(\frac{1}{2}x))$	M1 A1				
	(As differentiation is reverse of integration) $\frac{d}{dx} \left[\tan\left(\frac{1}{2}x\right) \right] = \csc x$	M1 A1 [4]				
(c)	$\left\{ y = \ln\left[\tan\left(\frac{1}{2}x\right)\right] - 3\sin x \Rightarrow \right\} \frac{dy}{dx} = \csc x - 3\cos x$	B1				
	$\left\{\frac{dy}{dx} = 0 \Rightarrow \right\} \csc x - 3\cos x = 0 \Rightarrow \frac{1}{\sin x} - 3\cos x = 0$	M1				
	$\Rightarrow 1 = 3\sin x \cos x \Rightarrow 1 = \frac{3}{2}(2\sin x \cos x) \text{ so } \sin 2x = k \text{, where } -1 < k < 1 \text{ and } k \neq 0$	M1				
	So $\sin 2x = \frac{2}{2}$					
	{ $2x = \{0.729727, 2.411864\}$ } So $x = \{0.364863, 1.205932\}$					
Wow?		12				
10 (c)	Method (Squaring Method) $\left\{ y = \ln \left\lfloor \tan \left(\frac{1}{2} x \right) \right\rfloor - 3\sin x \Rightarrow \right\} \frac{dy}{dx} = \csc x - 3\cos x$	B1				
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} \operatorname{cosec} x - 3\cos x = 0 \Rightarrow \frac{1}{\sin x} - 3\cos x = 0$					
	$\Rightarrow \frac{1}{1 - \cos^2 x} = 9\cos^2 x \text{ so } 9\cos^4 x - 9\cos^2 x + 1 = 0 \text{ or } 9\sin^4 x - 9\sin^2 x + 1 = 0$	M1				
	So $\cos^2 x = 0.873 \text{ or } 0.127$ or $\sin^2 x = 0.873 \text{ or } 0.127$	A1				
	So $x = \{0.364863, 1.205932\}$	A1 A1 [6]				

Way 3
10c) "t" method
$$\left\{ y = \ln\left[\tan\left(\frac{1}{2}x\right)\right] - 3\sin x \Rightarrow \right\} \frac{dy}{dx} = \csc x - 3\cos x$$
 B1
 $\left\{ \frac{dy}{dx} = 0 \Rightarrow \right\} \quad \csc x - 3\cos x = 0 \Rightarrow \frac{1}{\sin x} - 3\cos x = 0$
 $\Rightarrow \frac{1+t^2}{2t} - 3\frac{1-t^2}{1+t^2} = 0 \text{ so } t^4 + 6t^3 + 2t^2 - 6t + 1 = 0$
 $t = 0.1845 \text{ or } 0.6885$
So $x = \{0.364863..., 1.205932...\}$ A1
A1 A1
[6]

Notes

(a) M1: This mark is for the <u>underlined</u> equation in either form $\sin A \cos A + \cos A \sin A$ or $\sin A \cos A + \sin A \cos A$

A1: For this mark need to see : sin2A at the start of the proof, or as part of a conclusion sin(A + A) = at the start = sin A cos A + cos A sin A or sin A cos A + sin A cos A= 2sinA cos A at the end

(**b**)**M1**: For expression of the form $\frac{\pm k \sec^2(\frac{1}{2}x)}{\tan(\frac{1}{2}x)}$, where k is constant (could even be 1)

A1: Correct differentiation so $\frac{dy}{dx} = \frac{\frac{1}{2}\sec^2(\frac{1}{2}x)}{\tan(\frac{1}{2}x)}$

Way 1A:

dM1: Use both $\tan\left(\frac{1}{2}x\right) = \frac{\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$ and $\sec^2\left(\frac{1}{2}x\right) = \frac{1}{\cos^2\left(\frac{1}{2}x\right)}$ in their differentiated expression. This may be implied.

This depends on the previous Method mark.

A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given) Way 1B

dM1: Use both $\sec^2\left(\frac{1}{2}x\right) = 1 + \tan^2\left(\frac{1}{2}x\right)$ and $\tan\left(\frac{1}{2}x\right) = \frac{\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$

A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given) Way 2:

M1:Split into
$$\left\{ y = \ln\left[\sin\left(\frac{1}{2}x\right)\right] - \ln\left[\cos\left(\frac{1}{2}x\right)\right] \Rightarrow \right\}$$
 then differentiate to give $\frac{dy}{dx} = \frac{k\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{c\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$
A1: Correct answer $\frac{dy}{dx} = \frac{\frac{1}{2}\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{-\frac{1}{2}\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$
M1: Obtain $= \frac{\cos^{2}\left(\frac{1}{2}x\right) + \sin^{2}\left(\frac{1}{2}x\right)}{2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right)}$ A1*: As before

Way 3:

Alternative method: This is rare, but is acceptable. Must be completely correct.

Quotes $\int \csc x dx = \ln(\tan(\frac{1}{2}x))$ and follows this by $\frac{d}{dx} \left[\tan(\frac{1}{2}x) \right] = \csc x$ gets 4/4

PMT

(c) **B1**: Correct differentiation – so see
$$\frac{dy}{dx} = \csc x - 3\cos x$$

M1: Sets their $\frac{dy}{dx} = 0$ and uses $\csc x = \frac{1}{\sin x}$

Way 1:

M1: Rearranges and uses double angle formula to obtain $\sin 2x = k$, where -1 < k < 1 and $k \neq 0$

(This may be implied by $a + b \sin 2x = 0$ followed by correct answer)

A1: $\sin 2x = \frac{2}{3}$ (This may be implied by correct answer)

A1: Either awrt 0.365 or awrt 1.206 (answers in degrees lose both final marks)

A1: Both awrt 0.365 and awrt 1.206

Ignore y values. Ignore extra answers outside range. Lose the last A mark for extra answers in the range.

Way 2:

M1: Obtain quadratic in sinx or in $\cos x$. Condone $\cos ec^2 x - 9\cos^2 x = 0$ as part of the working A1 A1 A1: See scheme

Way 3:

This method is unlikely and uses $t = tan(\frac{x}{2})$. See scheme for detail

Question Number	Scheme			Marl	ks
11. (a)	$\frac{dy}{dx} = -3e^{a-3x} + 3e^{-x}$ $-3e^{a-3x} + 3e^{-x} = 0 \implies e^{-x} = e^{a-3x} \implies -x = a - 3x \implies x =$ $x = \frac{1}{2}a$ So, $y_P = e^{a-3(\frac{a}{2})} - 3e^{-(\frac{a}{2})}; = -2e^{-\frac{a}{2}}$		M1 A1 M1 A1 ddM1;	A1 [6]	
	M	ark parts (b) and (c) together			
	Method 1	Method 2	Method 3		
(b)	$0 = e^{a - 3x} - 3e^{-x} \implies e^{a - 2^{*}x} = 3$	$0 = e^{a - 3x} - 3e^{-x} \Rightarrow e^{2^{x}x} = \frac{e^{a}}{3}$	$0 = e^{a^{-3x}} - 3e^{-x} \Rightarrow 3e^{*2^{*x}} = e^{a}$	M1	
	$\Rightarrow a - "2" x = \ln 3$	"2" $x = a - \ln 3$	$\ln 3 + 2x = a$	dM1	
	$\Rightarrow x = \frac{a - \ln 3}{2}$ or equiva	elent e.g. $\frac{1}{2}\ln\left(\frac{e^a}{3}\right)$ or $-\ln\sqrt{1}$	$\left(\frac{3}{e^a}\right)$ etc	A1	
	Method 4 $0 = e^{a^{-3x}} - 3e^{-x} \Rightarrow e^{a^{-3x}} = 3e^{-x}$ $"2"x = a - \ln 3$ $\Rightarrow x = \frac{a - \ln 3}{2} \text{ o.e. } e^{a^{-1}x}$	and so $a - 3x = \ln 3 - x$ s.g. $\frac{1}{2} \ln \left(\frac{e^a}{3} \right)$ or $-\ln \sqrt{\left(\frac{3}{e^a} \right)}$ e	tc	M1 dM1 A1	[3]
(c)	y $y = e^{a-3x} - (0, e^{a} - 3)$	$-3e^{-x}$	Shape Cusp and behaviour for large x $(0, e^a - 3)$.	B1 B1 B1	
		x			[3] 12

Notes (a) M1: At least one term differentiated correctly A1: Correct differentiation of both terms M1: Sets $\frac{dy}{dx}$ to 0 and applies a correct method for eliminating the exponentials e^x to reach $x = \frac{dy}{dx}$ (At this stage the RHS may include $ln(e^{a})$ term but should include no x terms) A1: $x_p = \frac{1}{2}a$ after correct work **ddM1**: (Needs both previous M marks) Substitutes their x-coordinate into y (not into $\frac{dy}{dx}$) A1: $y_{P} = -2e^{-\frac{a}{2}}$ given as one term (b) Parts (b) and (c) may be marked together. Methods 1, 2and 3: **M1**: Put y = 0 and attempt to obtain $e^{f(x)} = k$ e.g. $e^{a \pm \lambda x} = 3$ (Method 1) or $e^{\lambda x} = \frac{e^{a}}{3}$ (Method 2) or $3e^{2^{a}x} = e^{a}$ (Method 3) Must have all x terms on one side of the equation for any of these methods dM1: This depends on previous M mark. Take logs correctly. e.g. $a \pm \lambda x = \ln 3$ (Method 1) or $\lambda x = a - \ln 3$ (Method 2) or $\ln 3 + 2^{\circ}x = a$ (Method 3) A1: cao $x_Q = \frac{a - \ln 3}{2}$ (must be exact) Method 4: M1: Puts $e^{a-3x} = 3e^{-x}$ then takes lns correctly (see scheme) $a-3x = \ln 3 - x$ dM1: Collects x terms on one side A1: $x_{Q} = \frac{a - \ln 3}{2}$ cao (must be exact to answer requirements of (c)) (c) B1: Correct overall shape, so $y \ge 0$ for all x, curve crossing positive y axis and small portion seen to left of y axis, meets x axis once, one maximum turning point **B1**: Cusp at $x = x_Q$ (not zero gradient) and no appearance of curve clearly increasing as x becomes large **B1**: Either writes full coordinates $(0, e^a - 3)$ in the text or $(0, e^a - 3)$ or $e^a - 3$ marked on the y-axis or even $(e^{a} - 3, 0)$ if marked on the y axis (must be exact) – allow $|e^{a} - 3|$ i.e. allow modulus sign, Can be earned without the graph. No requirement for $x_0 = \frac{a - \ln 3}{2}$ to be repeated for this mark. It has been credited in part (b)

Question
NumberSchemeMarks12 (a)change limits:
$$x = 0 \rightarrow t = 0$$
 and $x = \sqrt{3} \rightarrow t = \frac{\pi}{2}$ B112 (a)change limits: $x = 0 \rightarrow t = 0$ and $x = \sqrt{3} \rightarrow t = \frac{\pi}{2}$ B1Uses $V = (\pi) \int y^2 dx$ - in terms of the parameter t M1 $(\pi) \int y^2 dx = (\pi) \int y^2 dx^2 dt dt = (\pi) \int (2\sin^2 t)^2 \sec^2 t dt$ A1 $= {\pi} \} \int 4\tan^2 t \sin^2 t dt$ or $= {\pi} \} \int 4\sin^2 t \sin^2 t \frac{1}{\cos^2 t} t$ A1 $= {\pi} \} \int 4\tan^2 t \sin^2 t dt$ or $= {\pi} \} \int 4\sin^2 t \sin^2 t - 1 dt$ M1 $V = \pi \int_0^{t/5} y^2 dx = 4\pi \int_0^{t/5} (\tan^2 t - \sin^2 t) dt^2$ $T = {\pi} \} \int 4\sin^2 t \sec^2 t - 1 dt$ M1 $V = \pi \int_0^{t/5} y^2 dx = 4\pi \int_0^{t/5} (\tan^2 t - \sin^2 t) dt^2$ Uses $1 + \tan^2 t = \sec^2 t$ (may be implied)M1 $V = \pi \int_0^{t/5} y^2 dx = 4\pi \int_0^{t/5} (\cos^2 t - 1 - (\frac{1 - \cos^2 t}{2}) dt$ Uses $1 + \tan^2 t = \sec^2 t$ (may be implied)M1 $\left\{ = \int \sec^2 t - 1 - \frac{1}{2} + \frac{1}{2} \cos^2 t dt \right\} = \tan t - t - \frac{1}{2} t + \frac{1}{4} \sin^2 t$ M1M1 $\left\{ = \int \sec^2 t - 1 - \frac{1}{2} + \frac{1}{2} \cos^2 t dt \right\} = 0$ Applies limit of $\frac{\pi}{3}$ ddM1 $\left\{ = \int \sec^2 t - 1 - \frac{1}{2} + \frac{1}{2} \cos^2 t dt \right\} = 0$ Applies limit of $\frac{\pi}{3}$ ddM1 $\left\{ = \int \frac{9\sqrt{3}}{\pi} + \frac{2}{\pi} + \frac{1}{2} \sin^2 t dt \right\} = 0$ Applies limit of $\frac{\pi}{3}$ ddM1 $\left\{ = \sqrt{3} - \frac{\pi}{8} + \frac{\sqrt{3}}{8} - \frac{\pi}{2} + \frac{\sqrt{3}}{2} = 2\pi \right\} \infty$ Two term exact answerA1 $V = 4\pi \left(\frac{9\sqrt{3}}{\pi} - \frac{\pi}{2} \right) = \pi \pi \left(\frac{9\sqrt{3}}{2} - 2\pi \right) \infty$ Two term exact answerA1 $\left\{ = (\sin \left[\frac{1}{3} + \frac{1}{3} \sin^2 t - \frac{1}{3} + \frac{1}{3} \sin^2 t - \frac{1}{3} - \frac{1}{3$

Question Number	Scheme		ks
13. (a)	$R = \sqrt{5} = 2.23606$ (must be given in part (a))		
	$\tan \alpha = \frac{1}{2}$ or $\sin \alpha = \frac{1}{\sqrt{5}}$ or $\cos \alpha = \frac{2}{\sqrt{5}}$ (see notes for other values which gain M1)	M1	
	$\Rightarrow \alpha = 26.56505^{\circ}$ (must be given in part (a))	A1	
			[3]
(b)	Way 1: Uses distance between two lines is 4 (or half distance is 2) with correct trigonometry may state $4\sin\theta + 2\cos\theta = 4$ or show sketch	M1	
	Need sketch and $4\sin\theta + 2\cos\theta = 4$ and deduction that	A1 *	
	$2\sin\theta + \cos\theta = 2$ or $\cos\theta + 2\sin\theta = 2*$		[2]
	Way 2: Alternative method: Uses diagonal of rectangle as hypotenuse of right angle triangle and obtains $\sqrt{20} \sin(\theta + \alpha) = 4$	M1	
	So from (a) $2\sin\theta + \cos\theta = 2$ or $\cos\theta + 2\sin\theta = 2$	A1	
	Way 3: They may state and verify the result provided the work is correct and accurate See notes below. Substitution of 36.9 (obtained in (c) is a circular argument and is M0A0)		[2]
(c)	Way1: Uses $\sqrt{5}\sin(\theta + 26.57) = 2$ to obtain Way 2 $\cos^2 \theta + 4\cos\theta \sin\theta + 4\sin^2 \theta = 4$		
	See notes for variations $\frac{2}{2}$ (0.8044)	2.01	
	$\sin(\theta + 20.57) = \frac{1}{\sqrt{5}} (= 0.8944)$ $4\cos\theta\sin\theta - 3\cos^2\theta = 0$ $\cos\theta(4\sin\theta - 3\cos\theta) = 0.80 \tan\theta - 3$	MI	
	$\theta = \arcsin\left(\frac{2}{\text{their "}\sqrt{5}"}\right) - "26.57"$ $\theta = \arctan\frac{3}{4} \text{ or equivalent}$	M1	
	Hence, $\theta = 36.8699^{\circ}$	A1	
			[3]
(d)	Way 1: $"x" = \frac{2}{\tan^{''} 36.9"}$ Way 2: $"y" = \frac{4}{\sin \theta}$	B1	
	${h + x = 4 \Rightarrow} h + \frac{2}{\tan^{"}36.9"} = 4$ ${h + y = 8 \Rightarrow} h + \frac{4}{\sin^{"}36.9"} = 8$	M1	
	$h = 4 - \frac{2}{\tan 36.9} = 1.336 \text{ or } \frac{4}{3} \text{ or } \underline{1.3} (2\text{sf})$ $h = 8 - \frac{4}{\sin 36.9} = -\frac{4}{3} \text{ or } \underline{1.3} (2\text{sf})$	<u>A1</u> ca	o [3] 11

Notes
(a) B1 : $R = \sqrt{5}$ or awrt 2.24 no working needed – must be in part (a)
M1 : $\tan \alpha = \frac{1}{2}$ or $\tan \alpha = 2$ or $\sin \alpha = \frac{1}{\sqrt{5}}$ or $\sin \alpha = \frac{2}{\sqrt{5}}$ or $\cos \alpha = \frac{2}{\sqrt{5}}$ or $\cos \alpha = \frac{1}{\sqrt{5}}$ and attempt to
find alpha. Method mark may be implied by correct alpha.
A1: accept α = awrt 26.57; also accept $\sqrt{5}\sin(\theta + 26.57)$ - must be in part (a)
Answers in radians (0.46) are AU
(b) Way 1: M1: Uses distance between two lines is 4 (or half distance is 2) states $4\sin\theta + 2\cos\theta = 4$ or shows
sketch (may be on Figure 4 on question paper) with some trigonometry A1*: Shows sketch with implication of two right angled triangles (may be on Figure 4 on question paper) and follows $4\sin\theta + 2\cos\theta = 4$ by stating printed answer or equivalent (given in the mark scheme) and no
errors seen. Way 2:
on scheme (not a common method) Way 3:
They may state and verify the result provided the work is correct and accurate.
M1: Verification with correct accurate work e.g. $2 \times \frac{x}{4} + \frac{4-x}{2} = 2$, with x shown on figure
A1: Needs conclusion that $2\sin\theta + \cos\theta = 2$
Substitution of 36.9 (obtained in (c) is a circular argument and is M0A0)
(c) Way 1:
M1 : $\sin(\theta + \text{their } \alpha) = \frac{2}{\text{their } R}$ (Uses part (a) to solve equation)
M1: $\theta = \arcsin\left(\frac{2}{\text{their }R}\right)$ - their α (operations undone in the correct order with subtraction)
A1: awrt 36.9 (answer in radians is 0.644 and is A0)
Way 2: M1: Squares both sides uses appropriate trig identities and reaches $\tan \theta = \frac{3}{2}$ or $\sin \theta = \frac{3}{2}$ or $\cos \theta = \frac{4}{2}$ or
$\sin 2\theta = \frac{24}{25}$
{One example is shown in the scheme . Another popular one is
$2\sin\theta = 2 - \cos\theta \rightarrow 4(1 - \cos^2\theta) = 4 - 4\cos\theta + \cos^2\theta \rightarrow 5\cos^2\theta - 4\cos\theta = 0 \text{ and so } \cos\theta = \frac{4}{5} \text{ for } M1 \}$
M1 : $\theta = \arctan \frac{3}{4}$ or other correct inverse trig value e.g. $\arcsin \theta \left(\frac{3}{5}\right)$ or $\arccos \theta \left(\frac{4}{5}\right)$
A1: awrt 36.9 (answer in radians is 0.644 and is A0)
(d) Way 1: (Most popular)
B1 : States $x = \frac{2}{\tan \theta}$, where x (not defined in the question) is the non-overlapping length of rectangle
M1: Writes equation $h + \frac{2}{\tan \theta} = 4$ - must be this expression or equivalent e.g. $\tan \theta = \frac{2}{4-h}$ gets B1 M1
A1: accept decimal which round to 1.3 or the exact answer i.e. $\frac{4}{3}$ (may follow slight inaccuracies in
earlier angle being rounded wrongly)
N.B. There is a variation which states $\sin \theta = \frac{2\cos\theta}{4-h}$ or $\frac{\sin\theta}{2} = \frac{\sin(90-\theta)}{4-h}$ for B1 M1 then A1 as befor

Way 2: (Less common)B1 : States $y = \frac{4}{sin\theta}$, where y (not defined in question) is the non-overlapping length of two rectanglesM1: Writes equation $h + \frac{4}{sin\theta} = 8$ - must be this expression or equivalent e.g. $sin\theta = \frac{4}{8-h}$ gets B1 M1A1: as in Way 1There are other longer trig methods – possibly using Pythagoras for showing that h = 1.3 to 2sf. If the method is clear award B1M1A1 – otherwise send to review.

Question Number	Scheme		5
14. (a)	$A(1, a, 5), B(b, -1, 3), l: \mathbf{r} = -\mathbf{i} - 4\mathbf{j} + 6\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$ Either at point $A: \lambda = 1$ or at point $B: \lambda = 3$ leading to either $a = -3$ or $b = 5$ leading to both $a = -3$ and $b = 5$		
(b)	Attempts $\pm [(5\mathbf{i}' - \mathbf{j} + 3\mathbf{k}) - (\mathbf{i}' - 3\mathbf{j}' + 5\mathbf{k})]$ subtraction either way round $\overline{AB} = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ o.e. subtraction correct way round		[3]
(c)	Way 1 $(\overrightarrow{AC}) = \begin{pmatrix} 3 \\ "0" \\ -3 \end{pmatrix}$ or $(\overrightarrow{CA}) = \begin{pmatrix} -3 \\ "0" \\ 3 \end{pmatrix}$ Way 2 $AB = 2\sqrt{6}, AC = 3\sqrt{2}, BC = \sqrt{6}$	M1	[2]
	$\cos C\hat{A}B = \frac{\begin{pmatrix} 4\\2\\-2 \end{pmatrix} \cdot \begin{pmatrix} 3\\0\\-3 \end{pmatrix}}{\sqrt{(4)^2 + (2)^2 + (-2)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-3)^2}} \qquad $	dM1	
	$\cos C\hat{A}B = \frac{12 + 0 + 6}{\sqrt{24} \cdot \sqrt{18}} = \frac{\sqrt{3}}{2} (\text{o.e.}) \Rightarrow C\hat{A}B = 30^{\circ} *$ so $C\hat{A}B = 30^{\circ}$	A1 * cso	[3]
(d)	Area $CAB = \frac{1}{2}\sqrt{24}\sqrt{18}\sin 30^{\circ}$	M1	[-]
(e)	$= 3\sqrt{3} \text{ (or } k = 3)$ $\left(\overline{OD_{1}}\right) = \begin{pmatrix} -1 \\ -4 \\ 6 \end{pmatrix} + 5 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{ or } = \begin{pmatrix} 1 \\ a \\ 5 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} \text{ or } = \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} ; = \text{ or}$	A1 M1; oe	[2]
	$\begin{pmatrix} 9\\1\\1 \end{pmatrix}$	A1	
	$\overrightarrow{OD_{2}} = \begin{pmatrix} -1 \\ -4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{or} = \begin{pmatrix} 1 \\ a \\ 5 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} \text{or} = \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} ;$	M1; oe	
	$= \begin{pmatrix} -7 \\ -7 \\ 9 \end{pmatrix}$	A1	
	See notes for a common approach to part (e) using the length of AD		[4] 14

	Notes
Th	roughout – allow vectors to be written as a row, with commas, as this is another convention.
(a)	M1 : Finds, or implies, correct value of λ for at least one of the two given points
	A1: At least one of a or b correct A1: Both a and b correct
(b)	M1 : Subtracts the position vector of <i>A</i> from that of <i>B</i> or the position vector of <i>B</i> from that of <i>A</i> . Allow any notation. Even allow coordinates to be subtracted. Follow through their <i>a</i> and <i>b</i> for this method mark.
	A1: Need correct answer : so $\overline{AB} = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ or $\overline{AB} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$ or $(4, 2, -2)$ This is not ft.
(c)	Way 1:
	M1 : Subtracts the position vector of A from that of C or the position vector of C from that of A . Allow any notation. Even allow coordinates to be subtracted. Follow through their a for this method mark.
	dM1 : Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$.
	A1*: Correctly proves that $C\hat{A}B = 30^\circ$. This is a printed answer. Must have used $(\overrightarrow{AB} \text{ with } \overrightarrow{AC})$ or
	$(\overrightarrow{BA} \text{ with } \overrightarrow{CA})$ for this mark and must not have changed a negative to a positive to falsely give
	the answer, that would result in M1M1A0
	Do not need to see $\frac{\sqrt{3}}{2}$ but should see equivalent value. Allow $\frac{\pi}{6}$ as final answer.
N N C A	Way 2: M1: Finds lengths of AB, AC and BC IM1: Uses cosine rule or trig of right angled triangle, either sin, cos or tan A1: Correct proof that angle = 30 degrees
(d)	M1 : Applies $\frac{1}{2} \overrightarrow{AB} \overrightarrow{AC} \sin 30^\circ$ - must try to use their vectors (b – a) and (c – a) or state formula and
	try to use it. Could use vector product. Must not be using $\frac{1}{2} \overrightarrow{OB} \overrightarrow{OC} \sin 30^\circ$
	A1: $3\sqrt{3}$ cao – must be exact and in this form (see question)
(e)	M1 : Realises that <i>AD</i> is twice the length of <i>AB</i> and uses complete method to find one of the points. Then uses one of the three possible starting points on the line (<i>A</i> , <i>B</i> , or the point with position vector $-\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}$) to reach <i>D</i> . See one of the equations in the mark scheme and ft their <i>a</i> or <i>b</i> .
	So accept $(\overline{OD_1}) = \begin{pmatrix} -1 \\ -4 \\ 6 \end{pmatrix} + 5 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ or $= \begin{pmatrix} 1 \\ a \\ 5 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ or $= \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$
	A1: Accept (9, 1, 1) or 9 $\mathbf{i} + \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 9\\1\\1 \end{pmatrix}$ cao
	M1: Realises that AD is twice the length of AB but is now in the opposite direction so uses one of the three possible starting points to reach D . See one of the equations in the mark scheme and ft their a or b .

(e)

So accept
$$(\overline{OD}_{2}^{-}) = \begin{pmatrix} -1\\ -4\\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$$
 or $= \begin{pmatrix} 1\\ a \\ 5 \end{pmatrix} - 2 \begin{pmatrix} 4\\ 2\\ -2 \end{pmatrix}$ or $= \begin{pmatrix} b\\ -1\\ 3 \end{pmatrix} - 3 \begin{pmatrix} 4\\ 2\\ -2 \end{pmatrix}$
A1: Accept (-7, -7, 9) or -7i -7j + 9k or $\begin{pmatrix} -7\\ -7\\ 9 \end{pmatrix}$ cao
NB Many long methods still contain unknown variables x, y and z or λ . These are not complete
methods so usually earn M0A0M0A0 on part (e) PTO.
Mark scheme for a common approach to part (c) using the length of AD is
given below:
 $(2\lambda - 2)^{2} + (\lambda - 1)^{2} + ('1' - \lambda)^{2} = "96"$ then obtain $\lambda^{2} - 2\lambda - 15 = 0$ so $\lambda = ,$
then substitute value of λ to find coordinates. May make a slip in algebra
expanding brackets or collecting terms (even if results in two term quadratic)
This may be simplified to $\sqrt{6}(\lambda - 1) = 4\sqrt{6}$ or to $\sqrt{6}(1 - \lambda) = 4\sqrt{6}$
NB $6(1 - \lambda)^{2} = 4\sqrt{6}$ is M0 as one side has dimension (length)² and the other is
length
 $\begin{pmatrix} 9\\ 1\\ 1\\ 1 \end{pmatrix}$ (from $\lambda = 5$)
Substitute other value of λ . May make a slip in algebra
 $= \begin{pmatrix} -7\\ -7\\ 9 \end{pmatrix}$ (from $\lambda = -3$)
Special case – uses AD is half AB instead of double AB
 $(2\lambda - 2)^{2} + (\lambda - 1)^{2} + ("1'' - \lambda)^{2} = "6"$ then obtain $\lambda^{2} - 2\lambda = 0$ so $\lambda = ,$ then
substitute other value of λ
Substitute other value of λ
 $= \begin{pmatrix} -3\\ -2\\ 4 \end{pmatrix}$ (from $\lambda = 2$)
For this solution score M1A0M1A0 i.e. 2/4

Qu 12(b) using integration by parts

Qu 12 (b) Some return to $V = {\pi} \int 4\tan^2 t \sin^2 t dt$. There are two ways to proceed and both use integration by parts (b) Way 1: $\int (\tan^2 t \ \sin^2 t) dt = \int (\sec^2 t - 1) \sin^2 t dt$ $\begin{cases} = \sin^2 t \tan t - \int 2\sin t \cos t \tan t dt - \int \frac{1 - \cos 2t}{2} dt \\ = -\left(\frac{3}{4} \tan\left(\frac{\pi}{3}\right) - \left(\frac{\pi}{2}\right) + \frac{3}{4} \sin\left(\frac{2\pi}{3}\right)\right) - (0) \end{cases}$ Uses $1 + \tan^2 t = s$ Use $1 + \tan^2 t = s$ Uses $1 + \tan^2 t = \sec^2 t$ M1 Uses $\cos 2t = 1 - 2\sin^2 t$ M1 M1 A1 Applies limit of $\frac{\pi}{3}$ ddM1 $V = 4\pi \left(\frac{9\sqrt{3}}{8} - \frac{\pi}{2} \right)$ or $\pi \left(\frac{9\sqrt{3}}{2} - 2\pi \right)$ oe Two term exact answer A1 [6] Way 2: Try to use parts on $\int (\sec^2 t - 1)\sin^2 t \, dt \text{ using } u = \sin^2 t \text{ and } v = \tan t - t$ Award first two M marks as before Uses $1 + \tan^2 t = \sec^2 t$ and Uses $\cos 2t = 1 - 2\sin^2 t$ M1 M1 This needs parts twice and to get down to $= \sin^2 t (\tan t - t) - t + \frac{1}{2} \sin 2t - \frac{t}{2} \cos 2t + \frac{1}{4} \sin 2t$ M1A1 Then limits as before to give $V = 4\pi \left(\frac{9\sqrt{3}}{8} - \frac{\pi}{2}\right)$ or $\pi \left(\frac{9\sqrt{3}}{2} - 2\pi\right)$ oe ddM1A1

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE