1 (i)			B1	A correct bipartite graph	
	$F \bullet O \\ G \bullet P \\ H \bullet Q$				[1]
(ii)	$A \bullet \qquad \qquad \downarrow L$ $B \bullet \qquad \qquad \downarrow M$ $D \bullet \qquad \qquad \downarrow N$ $F \bullet \qquad 0$ $G \bullet \qquad \bullet P$		B1	A second bipartite graph showing the incomplete matching correctly No augmentations made, even if in pencil. Ignore the addition of an <i>X</i> vertex though.	
(iii)	Broomstick = Miss OliveBDrainpipe = Mrs LemonDFence post = Mr NutmegFGolf club = Rev QuinceG	= M = O	B1 B1	This path in any reasonable form or in reverse. Accept <i>X</i> - <i>H</i> - <i>P</i> - <i>G</i> - <i>Q</i> Not any longer path from <i>H</i> to <i>Q</i> This complete matching written down (use initials of surnames if ambiguous, eg Rev Pineapple is interpreted as P = Capt Peach)	[1]
(iv)	Broomstick = Prof Mulberry B Drainpipe = Mr Nutmeg D Fence post = Miss Olive F Golf club = Capt Peach G	$\mathbf{D} = N$	M1 A1	A different complete matching in any form A valid complete matching in which none of the suspects uses the same weapon as in their solution to (iii) Total =	[2]

2	(i)									
			1 pm	2 pm	3 pm	4 pm	5 pm	1		
		R S	7 5	6 0	8	3 4	9 4	M1	Modify table by subtracting each entry from a constant value	
		T	6	3	7	5	7			
		W	4	2	6	2	7			
		Y	2	2	3	6	7	A1	Correct table (ie this \pm a constant	[2]
		Reduce	rowe						throughout, with no negative values)	
		Reduce	4	3	5	0	6			
			5	0	4	4	4	M1	Substantially correct attempt to	
			3	0	4	2	4		reduce rows (at most 2 independent errors)	
			2	0	4	0	5		(at most 2 macpendent errors)	
			0	0	1	4	5			
		Reduce	columns							
			4	3	4	0	2			
			5	0	3	4	0	M1	Substantially correct attempt to	
			32	0	3	2	0		reduce columns	
			0	0	0	4	1		(at most 2 independent errors)	
			Ŭ	Ŭ		. ·	-	A1	Their reduced cost matrix	[3]
		Cross ou		ng minii						
			4	3	4	0	2			
			5 3	0 0	3	4 2	0			
			2	0	3		1			
			0	0	0	4	1			
		Augmen	1t 2	3	2	0	2	M1	Substantially correct attempt at	
			3	0	1	4	0		augmenting (at most 2 errors)	
			1	0	1	2	0			
			0	0	1	0	1	A1	Their matrix augmented correctly to	[2]
			0	2	0	6	3		reach a complete matching	
			1 pm	2 pm	3 pm	4 pm	5 pm			
		R	$\frac{1}{2}$	2 pm 3	2 2	4 pm	2 J pin			
		S	3	0	1	4	0			
		Т	1	0	1	2	0			
		W	0	0	1	0	1			
		Y	0	2	0	6	3			
		Mrs Roy	wan =	4 pm	pr = 4 pr	m		D1	Tind and Line and	
			erbirch =		or = 5 pr			B1	First matching, cao	
		Mr Tho	rn =	5 pm o	pr = 2 pn	n		B1	Second matching, cao	
		Ms Will		1 pm						
		Sgt Yew	/ =	3 pm	or = 3 pn	n				[2]
	(ii)	Mr Tho	rn					B1	Follow through their matchings	[1]
	(11)		. 11						(but not to S)	[1]
	1	1						1	Total =	10
										-

3	(i)	Stage	State	Action	Working	Suboptimal minima	B1	Structure of table correct (stage,	
			0	0	5	5		state, action and 'working'	
		3	1	0	4	4	M1	columns)	[2]
			2	0	6	6	A1	Stage and state values correct Action values correct	[3]
			0	0	5 + 5 = 10	10		Action values contect	
				1	6 + 4 = 10	10	M1	Working column substantially	
		2	1	0	3 + 5 = 8	8		correct for stage 2 (calcs or totals)	
				1	5 + 4 = 9			(at most 1 error)	
			2	1	3+4=7	7	A1	Suboptimal minima (10, 8, 7)	[2]
			0	2	2+6=8			correct for stage 2 (cao)	
			0	1	2+10 = 12 3+8 = 11	11			
		1	1	1	3+8=11 2+8=10	10	M1	Working column substantially	
		1	1	2	2 + 3 = 10 3 + 7 = 10	10		correct for stage 1(at most 1 error)	
			2	2	8 + 7 = 15	15	A1	Suboptimal minima (11, 10, 15)	[2]
			_	0	6 + 11 = 17	17		correct for stage 1 (cao)	
		0	0	1	8 + 10 = 18				
				2	3 + 15 = 18				
				e = (0;0)	- (1;0) - (2;1) -	- (3;0) – (4;0)			
		Weight	= 17				B1	Correct route from $(0; 0)$ to $(4; 0)$	[2]
							B1	17 cao (written down, not just	
								implied from table)	
	(ii)	Start at t	the hott	om of the	e table at (0; 0)			
	(11)				mes from action	/			
				cts to (1;			M1	Start at (0; 0), action 0 or value 11	
		Optimu	n for (1	; 0) com	es from action	n 1,		(theirs), hence $(1; 0)$	
				ets to (2;					
					es from action		A1	(1; 0), action 1 (theirs), hence (2; 1)	503
		so (2; 1)	connec	ets to $(3;$	0) and hence t	to (4; 0)		Clearly relating <u>action</u> to state for	[2]
								stage above	
\vdash	II						<u> </u>	Total =	11
L									

4	(i)	In each game, whatever combination of strategies is chosen, the total number of points won is zero	B1	Points won by Euan equals points lost by Wai Mai, and vice versa, in every case	[1]
	(ii)	-2	B1	Loses 2	[1]
	(iii)	Z is dominated by Y	M1	Idea of dominance by <i>Y</i>	
		In each row she loses more by choosing <i>Z</i> than <i>Y</i> $-3 < 5$, $-4 < 3$, $-2 < 5$ and $1 < 2$ (or equivalent)	A1	Four valid comparisons <u>and</u> a convincing explanation (or equivalent in words)	[2]
	(iv)	Wai Mai X Y row min A 2 -5 B -1 -3 C 3 -5 D 3 -2 col max 3 -2 $*$	M1	Determining row minima and column maxima, or equivalent (may be implied from both D and Y stated)	
		Play-safe for Euan is <i>D</i> Play-safe for Wai Mai is <i>Y</i>	A1 A1	<i>D</i> , stated (not just identified in table) <i>Y</i> , stated (not just identified in table)	
		Game is stable, since row maximin = col minimax, $-2 = -2$	B1	Stable, with a valid reason attempted (numerical or in words) (www)	[4]
	(v)	A: $-2p + 5(1-p) = 5 - 7p$ B: $p + 3(1-p) = 3 - 2p$ C: $-3p + 5(1-p) = 5 - 8p$ D: $5p + 2(1-p) = 2 + 3p$ (note: leaving DX as 3 gives D: $2 - 5p = M1A0A0$)	M1 A1 A1	Any one correct (or negative of correct), simplified or not All four correct (or negative of correct) and simplified All four correct and simplified	[3]
	(vi)	5 4 2 1 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 -1 -1 -1 -1 -1 -1 -1 -1 -1	M1 A1	Graph paper used with sensible scales Their equations plotted correctly	[2]
		2 + 3p = 3 - 2p $\Rightarrow p = 0.2$	M1 A1	Solving correct pair, or from graph 0.2, cao, from correct equations used (algebraically or from graph) (www)	[2]
				Total =	15

5	(i)	21+36 +7 +18	M1	Evidence of using the correct cut	
		= 82	A1	(eg 21 (\pm 23) + 36 + 7 + 18 seen) 82	[2]
	(ii)	At most 17 can leave C so there cannot be as much as 20 or 18 entering it	B1	17 < both 20 and 18 (NOT 17 < 38)	
		At most 17 can enter <i>E</i> so there cannot be $7 + 18$ = 25 leaving it	B1	17 < 7 + 18	[2]
		Maximum that can flow in arc <i>HT</i> is 33 Flow along arc $HG = 0$	B1 B1	33 0	[2]
	(iii)	A diagram showing a flow of 58 in which amount in equals amount out at each vertex, apart from S and T	M1	Assume that "blanks" mean 0 or full to capacity, provided consistent	
		Arcs <i>CE</i> , <i>FH</i> and <i>GT</i> are saturated and other arc capacities are not exceeded	A1		
		Cut $X = \{S, A, B, C, D, F, G\}, Y = \{E, H, T\}$ Or cut through <i>GT</i> , <i>GH</i> , <i>FH</i> , <i>EF</i> and <i>CE</i>	B1	This cut presented in any form (accept it drawn on diagram)	[3]
	(iv)	Substantially correct attempt in which excess capacities and potential backflows marked correctly on arcs <i>CE</i> , <i>FH</i> and <i>GT</i>	M1	Assume that blanks mean 0 Accept <u>all</u> directions swapped	
		Their excess capacities and potential backflows marked correctly on arcs out of S and arcs into T and on HG	A1	Check directions on <u><i>HG</i></u> carefully If no flow in (iii), or ambiguous, then any valid flow > 0 labelled correctly gets M1, but must also be a flow of 58 to get A1	[2]
	(v)	Feasible route(s) written that send an additional 2 through system (or more on follow through)	M1	Routes must be written out properly eg route <i>SBFGHT</i> by 2	
		All route(s) valid with an additional 2 along <i>GH</i>	A1		[2]
	(vi)	Their flow from part (iii) augmented by their routes in part (v)	M1	Follow through if possible	
		No more can flow across the cut $X = \{S, C\}, Y = \{A, B, D, E, F, G, H, T\}$	A1	Any reasonable explanation	[2]
				Total =	15

ANSWERED ON INSERT

4737

Mark Scheme

June 2010

PARTS (i), (ii) AND (iii) ANSWERED ON INSERT

6	(i)						
		Activity	Duration	Predecessors			
		A	6	-			
		В	5	-			
		С	3	A, B			
		D	9	Α			
		E	4	A, B	B1	Predecessors correct for A to F	
		F	2	A, B	BI	(entries for A and B may be blank)	
		G	2	E, H		(entries for A and B may be blank)	
		H	3	<i>C</i> , <i>F</i>	M1	Substantially correct attempt at	
		I	5	<i>D</i> , <i>G</i>		predecessors for other activities	
		J	6	E, H		(at most 2 errors)	
		K	10	<i>C</i> , <i>F</i>			
		<u>L</u> <u>M</u>	4 12	I	A1	Predecessors all correct for G to N	
		N N	6	J, K, L			
		11	0	J, Λ, L			[3]
<u> </u>							
	(ii)	Dummy is needed			B1	<i>D</i> does not follow <i>B</i>	
		and F follow both	A and B but D	follows A only	BI	D does not follow $B(D follows A only)$	
		Dummy is needed	d batwaan d and	5 so that C and		(D Tonows A only)	
		F do not share bo			B1	Identifying C and F appropriately	
		finish	di a common sta		21	i denini jing e and i approprimery	[2]
		minim					
	(iii)						
		1 2 3 4	1 5 6 7	8 9 10	B1	Early event times correct, in table	
			9 9 12 15		M1	Substantially correct backwards pass	
		0 6 7 1	0 10 13 15	20 26 32	. 1	(at most 2 errors in total)	
					A1	Late event times correct, in table	
		Minimum project		e = 32 minutes	B1	32, cao	
		Critical activities:	A, D, I and M		B1	A, D, I, M and no others, cao	[5]
	(*)	T 1 set		1 624 1	M 1		
	(iv)	Early event time a	at P becomes the	e larger of 24 and	M1 A1	9+x Larger of 24 and $9+x$	
		9+x			AI	Larger of 24 and $9+x$	
		Early event time a	at 10 becomes th	a larger of 32 and			
		15+x, which then	also becomes the	e late event time	M1	Considering the event times at 10	
		at 10^{+x} , which then	uiso occomes ui				
		at 10					
		Late event time at	t 9 then become	s 26 or 9+x	A1	Correct consideration of 26 and $9+x$	
		Late event time a			111	Contect consideration of 20 and $9+x$	[4]
	(v)	<i>x</i> = 17			B1	17	[1]
							[*]
						Total =	15