Question Number	Scheme	Marks
Q1 (a)	$r = \frac{8825}{\sqrt{1022500 \times 130.9}},$ = awrt <u>0.763</u>	M1 A1 (2)
(b)	Teams with high attendance scored more goals (oe, statement in context)	B1 (1)
(c)	0.76(3)	B1ft (1)
		Total 4
(a)	M1 for a correct expression, square root required Correct answer award 2/2	
(b)	Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe	
(c)	Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.	

Question Number	Scheme	Marks
Q2 (a)	$ \begin{array}{c ccccc} \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & & \\ $	B1 B1
(b)	$P(H) = \frac{5}{12} \times \frac{2}{3} + \frac{7}{12} \times \frac{1}{2}, = \frac{41}{72} \text{ or awrt } 0.569$	M1 A1 (2)
(c)	$P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{41}{72}}, = \frac{20}{41} \text{ or awrt } 0.488$	M1 A1ft A1
(d	$\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$ $= \frac{25}{144} + \frac{49}{144} = \frac{74}{144} \text{or} \frac{37}{72} \text{ or awrt } 0.514$	M1 A1ft A1 (3)
(a		Total 10
(b)	2^{nd} B1 for probabilities on the second set of branches. Accept $0.\dot{6}$, $0.\dot{3}$, 0.5 and $\frac{1.5}{3}$ Allow exact decimal equivalents using clear recurring notation if required.	ties from their
(c)	5	
Formula seer	M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\frac{5}{12}}{\text{(their (b))}}$ award M1.	
Formula not seer	1 DIODADIIIV & DIODADIIIV	
	1 st A1ft for a fully correct expression or correct follow through 2^{nd} A1 for $\frac{20}{41}$ o.e.	
(d	(d) M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram 1st A1 for both values correct or follow through from their original tree and + 2nd A1 for a correct answer	
	Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0	

Question Number	Scheme	Marks	
Q3 (a)	$2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)	M1	
	$a = \frac{1}{4} \text{ or } 0.25$	A1	(2)
(b)	$E(X) = \underline{1}$	B1	(1)
(c)	$E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} $ (= 3.1) $Var(X) = 3.1 - 1^{2}, $ = 2.1 or $\frac{21}{10}$ oe	M1	
	$Var(X) = 3.1 - 1^2$, $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$	M1 A1	(3)
(d)	$Var(Y) = (-2)^{2} Var(X), \qquad = 8.4 \text{ or } \frac{42}{5} \text{ oe}$	M1 A1	(2)
(e)	$X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ " + $\frac{1}{5}$	M1 A1ft	
	$=\frac{9}{20}\underline{\mathbf{oe}}$	A1	(3)
		Tota	l 11
(a)	M1 for a clear attempt to use $\sum P(X = x) = 1$ Correct answer only 2/2. NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.		
(b)	B1 for 1		
(c)	1 st M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through. 2^{nd} M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ incorrect formula seen. Correct answer only 3/3.) provided no	0
(d)	M1 for $(-2)^2 \text{Var}(X)$ or $4\text{Var}(X)$ Condone missing brackets provided final answer correct for their $\text{Var}(X)$. Correct answer only 2/2.		
(e)	Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$ M1 for identifying $X = 2$, 3 1st A1ft for attempting to find their $P(X=2) + P(X=3)$ 2^{nd} A1 for $\frac{9}{20}$ or 0.45		

Quest Numb		Scheme	Marks	
Q4	(a)	$\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6} \text{ (** given answer**)}$	M1 A1cso	(2)
	(b)	$\frac{4+2+5+3}{\text{total}}$, $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$	M1 A1	(2)
	(c)	$P(A \cap C) = 0$	B1	(1)
	(d)	$P(C \text{ reads at least one magazine}) = \frac{6+3}{20} = \frac{9}{20}$	M1 A1	(2)
	(e)	$P(B) = \frac{10}{30} = \frac{1}{3}, \ P(C) = \frac{9}{30} = \frac{3}{10}, \ P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$	M1	
		$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$	M1	
		So yes they are statistically independent	A1cso	(3)
			Tota	ıl 10
	(a)	M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$		
	(b)	M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule		
	(c)	B1 for 0 or 0/30		
	(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20 $\frac{9}{20}$ only, 2/2		
	(e)	1 st M1 for attempting all the required probabilities for a suitable test 2 nd M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment		

Ques		Coh our o	AA - wloo	
Numb		Scheme	Marks	
Q5	(a)	23, 35.5 (may be in the table)	B1 B1	(2)
	(b)	Width of 10 units is 4 cm so width of 5 units is 2 cm	B1	
		Height = $2.6 \times 4 = 10.4 \text{ cm}$	M1 A1	(3)
	(c)	$\sum fx = 1316.5 \Rightarrow \bar{x} = \frac{1316.5}{56} = \text{awrt } \underline{23.5}$	M1 A1	
		$\sum fx^2 = 37378.25 \text{ can be implied}$	B1	
		So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt} \underline{10.7}$ allow $s = 10.8$	M1 A1	(5)
	(d)	$Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>	M1 A1	(2)
	(e)	$Q_3 - Q_2 = 5.6$, $Q_2 - Q_1 = 7.9$ (or $\overline{x} < Q_2$)	M1	
		[7.9 > 5.6 so] <u>negative skew</u>	A1	(2)
			Tota	l 14
	(b)	M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.	1	
	(c)	1 st M1 for reasonable attempt at $\sum x$ and /56		
		$2^{\rm nd}$ M1 for a method for σ or s , $\sqrt{}$ is required		
		Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}, \sum f^2 x = 13922.5 \text{ M0} \text{ and } (\sum fx)^2 = 1733172$	M0	
		Correct answers only, award full marks.		
	(d)	Use of $\sum f(x - \bar{x})^2 = \text{awrt } 6428.75 \text{ for B1}$		
		lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct fo 28.5 in fraction that gives awrt 23.9 for M1A1	r M1 - Allov	v
	(e)	M1 for attempting a test for skewness using quartiles or mean and median. Provided median greater than 22.55 and less than 29.3 award for M1 for $Q_3 - Q_2 < Q_2 - Q_3$ as a valid reason.	n without va	lues
		SC Accept mean close to median and no skew oe for M1A1		

Question Number	Scheme	Marks
Q6 (a)	20	B1 B1
	d (100 km)	(2)
(b)	The points lie reasonably close to a straight line (o.e.)	B1 (1)
(c)	$\sum d = 27.7, \qquad \sum f = 146 $ (both, may be implied)	B1
	$\sum d = 27.7, \qquad \sum f = 146$ (both, may be implied) $S_{dd} = 152.09 - \frac{(27.7)^2}{6} = 24.208$ awrt <u>24.2</u>	M1 A1
	$S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$ awrt <u>49.1</u>	A1 (4)
(d)	$b = \frac{S_{fd}}{S_{dd}} = 2.026$ $awrt 2.03$ $a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so $\underline{f} = 15.0 + 2.03\underline{d}$	M1 A1
	$a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so $\underline{f} = 15.0 + 2.03d$	M1 A1 (4)
(e)	A flight costs £2.03 (or about £2) for every extra 100km or about 2p per km.	B1ft (1)
(f)	$15.0 + 2.03d < 5d \qquad \text{so} d > \frac{15.0}{(5 - 2.03)} = 5.00 \sim 5.05$	M1
	So $t > 500 \sim 505$	A1 (2)
		Total 14

- 1st B1 for at least 4 points correct (allow <u>+</u> one 2mm square) 2nd B1 for all points correct (allow \pm one 2 mm square
- Ignore extra points and lines (b) Require reference to points and line for B1.
- (c) for a correct method seen for either - a correct expression 1st A1 for S_{dd} awrt 24.2 $2^{\text{nd}} \text{ A}1$ for S_{fd} awrt 49.1
- for a correct expression for b can follow through their answers from (c) 2^{nd} M1 for a correct method to find a - follow through their b and their means 2^{nd} A1 for $f = \dots$ in terms of d and all values awrt given expressions. Accept 15 as rounding from correct answer only.
- Context of cost and distance required. Follow through their value of b (e)
- (f) M1 for an attempt to find the intersection of the 2 lines. Value of t in range 500 to 505 seen award M1. Value of *d* in range 5 to 5.05 award M1.
 - Accept t greater than 500 to 505 inclusive to include graphical solution for M 1A1

		/ST01/01: Statistics S1		
Que: Num	stion iber	Scheme	Marks	
Q7	(a)	$P(D > 20) = P\left(Z > \frac{20 - 30}{8}\right)$	M1	
		= P(Z > -1.25)	A1	
		= 0.8944 awrt 0.894	A1	(3)
	(b)	$P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$	M1 B1	
		$Q_3 = \text{awrt } 35.4$	A1	(3)
	(c)	$35.4 - 30 = 5.4$ so $Q_1 = 30 - 5.4 = $ awrt 24.6	B1ft	(1)
	(d)	$Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$	M1	
		h=8.4 to 8.6 and $k=51.4 to 51.6$ both	A1	(2)
	(e)	2P(D > 51.6) = 2P(Z > 2.7)	M1	
		$= 2[1 - 0.9965] = \text{awrt } \underline{0.007}$	M1 A1	(3)
			Tota	
	(a)	M1 for an attempt to standardise 20 or 40 using 30 and 8. 1^{st} A1 for $z = \pm 1.25$ 2^{nd} A1 for awrt 0.894	1	
	(b)	M1 for $\frac{Q_3 - 30}{9}$ = to a z value		
		M0 for 0.7734 on RHS. B1 for (z value) between 0.67~0.675 seen. M1B0A1 for use of $z = 0.68$ in correct expression with awrt 35.4		
	(c)	Follow through using their of quartile values.		
	(d)	M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of th in the question - follow through their quartiles	e formulae gi	ven
	(e)	1^{st} M1 for attempting $2P(D > \text{their } k)$ or ($P(D > \text{their } k) + P(D < \text{their } h)$) 2^{nd} M1 for standardising their h or k (may have missed the 2) so allow for standardising $P(D > 51.6)$ or $P(D < 8.4)$ Require boths Ms to award A mark.		

© Pearson Education Limited 2013