| Candidate | Centre | Candidate | |-----------|--------|-----------| | Name | Number | Number | | | | 2 | ### GCE A level 1095/01 ### **CHEMISTRY CH5** A.M. MONDAY, 28 June 2010 $1^{3}/_{4}$ hours ### ADDITIONAL MATERIALS In addition to this examination paper, you will need: - a calculator; - a copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require. ### INSTRUCTIONS TO CANDIDATES Write your name, centre number and candidate number in the spaces at the top of this page. **Section A** Answer all questions in the spaces provided. **Section B** Answer **both** questions in **Section B** in a separate answer book which should then be placed inside this question-and-answer book. Candidates are advised to allocate their time appropriately between Section A (40 marks) and Section B (40 marks). #### INFORMATION FOR CANDIDATES The number of marks is given in brackets at the end of each question or part-question. The maximum mark for this paper is 80. Your answers must be relevant and must make full use of the information given to be awarded full marks for a question. You are reminded that marking will take into account the Quality of Written Communication in all written answers. | FOR EXAMINER'S
USE ONLY | | | | | |----------------------------|----------|------|--|--| | Section | Question | Mark | | | | | 1 | | | | | A | 2 | | | | | | 3 | | | | | В | 4 | | | | | В | 5 | | | | | TOTAL | | | | | Examiner only ### **SECTION A** Answer all the questions in the spaces provided. 1. (a) Magnesium carbonate decomposes on heating. $$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$ (i) Given the enthalpy change of formation, $\Delta H_{\rm f}^{\bullet}$, values below, calculate the enthalpy change, ΔH^{\bullet} , for the decomposition of magnesium carbonate. [1] | Species | Enthalpy change of formation $\Delta H_{\rm f}^{-\Phi}/~{\rm kJ~mol}^{-1}$ | | |-----------------------|--|--| | CO ₂ (g) | -393.5 | | | MgCO ₃ (s) | -1095.8 | | | MgO(s) | -601.7 | | | (ii) | The entropy change, ΔS^{\bullet} , for the decomposition is 174.8 J mol ⁻¹ K ⁻¹ . Expl why there is an increase in entropy for this reaction. | lair
[1] | |-------|---|-------------| | (iii) | Convert the value of ΔS^{\bullet} into units of kJ mol ⁻¹ K ⁻¹ . | [1] | | | | | | (iv) | Using your answers to (a) (i) and (iii), determine, in degrees K, the temperat above which magnesium carbonate would decompose spontaneously. | [3] | | | | | (b) The solution of ionic compounds such as magnesium carbonate or sodium carbonate in water at 20 °C (room temperature) can be represented by the equations $$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$$ $$Na_2CO_3(s) \approx 2Na^+(aq) + CO_3^{2-}(aq)$$ Use the free energy change, ΔG , values in the table to comment on the solubilities of magnesium carbonate and sodium carbonate in water. [2] | Solution | Free Energy Change ΔG / kJ mol ⁻¹ | |--|--| | $MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$ | +28.2 | | $Na_2CO_3(s) \rightleftharpoons 2Na^+(aq) + CO_3^{2-}(aq)$ | -4.3 | | |
 | | |--|------|--| Turn over. Examiner only | (c) | As solids do not a | affect the | position of | `equilibrium, | for the | solution | equilibrium | |-----|--------------------|------------|-------------|---------------|---------|----------|-------------| |-----|--------------------|------------|-------------|---------------|---------|----------|-------------| $$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$$ the simplest expression for the equilibrium constant, $K_{\rm c}$, can be written $$K_c = [Mg^{2+}(aq)][CO_3^{2-}(aq)]$$ | (i) | Given that the solubility of MgCO ₃ at 20 °C is 3.16×10^{-3} mol dm ⁻³ , state the molar concentrations of magnesium ions, Mg ²⁺ (aq), and carbonate ions CO ₃ ²⁻ (aq), in a saturated MgCO ₃ solution. [1] | |-------|--| | (ii) | Hence calculate the value of $K_{\rm c}$ at 20 °C. [1] | | (iii) | Giving your reasons, state whether the value of K_c is consistent with the value of the free energy change, ΔG , given for this reaction in (b) . | | (iv) | By applying Le Chatelier's Principle to the chemical equation above, and giving your reasons, state the effect on the solubility of magnesium carbonate of adding sodium carbonate to the solution. | | | | Total [12] ## **BLANK PAGE** 005 01 05 (1095-01) **Turn over.** **2.** (a) The diagram shows the variation of the ionic product of water, $K_{\rm w}$, with temperature. Examiner only (i) Give the expression for the ionic product of water, $K_{\rm w}$. [1] (ii) By reference to the diagram, and giving your reasoning, state whether the ionisation of water is an exothermic or an endothermic process. [1] (iii) Use the diagram to determine the value ($\text{mol}^2 \, \text{dm}^{-6}$) of K_{w} at 50 °C. [1] (iv) Hence calculate [H⁺] and the pH of pure water at 50 °C. [2] Examiner only (b) The diagram below shows how pH changes during the course of a titration when hydrochloric acid of concentration 0.100 mol dm⁻³ is added from a burette to 25.0 cm³ of aqueous ammonia. $$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$ (i) Calculate, to **two** significant figures, the concentration of the aqueous ammonia solution. [3] Volume HCl added/cm³ 095 01 07 Examiner only | (ii) | y a buffering effect occurs in the region of the curve marked with the ere a mixture of $NH_3(aq)$ and $NH_4Cl(aq)$ is present. [3] | | | |-------|---|----------|-------------------------------------| | | | | | | |
 | | | | | | | | | (iii) | er reasoning, state which on the ation of ammonia against | | indicators would be suitable d. [2] | | | Indicator | pH range | | | | Bromothymol blue | 6.0-7.6 | | | | Methyl red | 4.2-6.3 | | | | Methyl yellow | 2.9-4.0 | | | | Phenolphthalein | 8.2-10.0 | | | | | | 1 | | | | | | | | | | | | | | | | 15 20 9 Examiner only **3.** Read the passage below and then answer questions (a) to (d) in the spaces provided. ### **Hydrogen Fuel Cells** 1 Although fuel cells have been around since 1839, it took another 120 years until NASA demonstrated some of their potential applications when providing power during space flights. A fuel cell works like an electrochemical cell (battery) but does not run down or need recharging. It will produce electricity and heat as long as fuel (hydrogen) is supplied. A fuel cell consists of two electrodes—an anode where oxidation occurs and a cathode for reduction—sandwiched around an electrolyte. Replacing the salt bridge of conventional electrochemical cells, several electrolyte systems have been tried such as phosphoric acid or a solid electrolyte based on polymeric fluorocarbons. The relevant electrode potentials are 10 $$2H^{+} + 2e^{-} \rightleftharpoons H_{2} \qquad E^{\rightleftharpoons} = 0V$$ $$O_{2} + 4H^{+} + 4e^{-} \rightleftharpoons 2H_{2}O \qquad E^{\rightleftharpoons} = 1.23V$$ Hydrogen is fed to the anode, and oxygen (air) to the cathode. Activated by a catalyst, usually involving a layer of platinum and carbon a few nanometres thick, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons migrate through the electrolyte. Fuel cells can be used to power vehicles or to provide electricity and heat to buildings. A significant barrier to using fuel cells in vehicles is hydrogen storage. Most fuel-cell vehicles powered by hydrogen store the hydrogen as a compressed gas in pressurized tanks. Due to the low energy density of hydrogen, it is difficult to store enough hydrogen onboard to allow vehicles to travel the same distance as petrol-powered vehicles. A potentially energy-dense water-based fuel is based on sodium tetrahydridoborate(III) (30% by mass NaBH₄ in water). A catalyst induces rapid hydrogen production $$NaBH_4 + 2H_2O \rightarrow 4H_2 + NaBO_2 \qquad \Delta H^{-} = -300 \text{ kJ mol}^{-1}$$ and pure humidified H₂ is delivered to the engine or fuel cell. The exothermic reaction requires no heat input and sodium borate, NaBO₂, can be recycled into NaBH₄. - End of passage - Turn over. Examiner only 10 | (a) | State the function performed by both the salt bridge in an electrochemical cell and the electrolyte in a fuel cell. (<i>lines 6-7</i>) [2] | | | | | |-----|--|---|-------------|--|--| | (b) | (i) | Explain why the $2H^+ + 2e^- \implies H_2$ electrode has an electrode potential of zero (line 10) | ero.
[1] | | | | | (ii) | Calculate the EMF of the hydrogen fuel cell. (lines 10-11) | [1] | | | | | (iii) | Give one reason why the EMF calculated in (b) (ii) is not attained in praction with $0.7\mathrm{V}$ being a typical value for a fuel cell. |
[1] | | | | | (iv) | Write a balanced equation for the overall reaction which occurs in the cell. (lines 10-11) | [1] | | | | | (v) | Given that ΔH_f^{\bullet} H ₂ O(l) = -285.8 kJ mol ⁻¹ , calculate the enthalpy change, ΔH^{\bullet} , for the equation in (b) (iv). | [1] | | | | | | | | | | Examiner only | (c) | (i) | State one disadvantage, mentioned in the passage, of using hydrogen fuel cells to power vehicles. (<i>lines 18-21</i>) [1] | |-----|-------|---| | | (ii) | Give a second disadvantage, not mentioned in the passage, of using hydrogen as a fuel in vehicles. [1] | | | (iii) | State one advantage of using a hydrogen fuel cell compared to the combustion of petrol. [1] | | (d) | | en 1 kg of the water-based fuel (30% NaBH ₄ by mass) is reacted to produce ogen, calculate (<i>lines 22-26</i>) | | | (i) | the mass, and hence the number of moles, of NaBH ₄ in 1 kg of the water-based fuel, [2] | | | (ii) | the energy given out (kJ) by 1 kg of the water-based fuel, [1] | | | (iii) | the volume of hydrogen gas produced. [2] [Assume 1 mol H ₂ gas occupies a volume of 24 dm ³] | | | | | | | | Total [15] | ### **SECTION B** Answer both questions in the separate answer book provided. **4.** (a) Bromine, Br_2 , reacts with propanone, CH_3COCH_3 , in aqueous solution. $$Br_2(aq) + CH_3COCH_3(aq) \rightarrow HBr(aq) + CH_3COCH_2Br(aq)$$ - (i) If the initial bromine concentration, $[Br_2(aq)]$, was $0.0020 \,\text{mol dm}^{-3}$ and the Br_2 was completely used up in 17 min 30 seconds, calculate the rate of the reaction (including units). - (ii) Outline one method which could be used to determine the rate for this reaction. [2] - (iii) The following results were obtained when propanone and bromine were reacted in acid solution. | Rate of reaction / mol dm ⁻³ min ⁻¹ | [Br ₂ (aq)]
/ mol dm ⁻³ | [CH ₃ COCH ₃ (aq)]
/ mol dm ⁻³ | |---|--|--| | 6.80×10^{-5} | 0.10 | 0.40 | | 1.36×10^{-4} | 0.10 | 0.80 | | 1.36×10^{-4} | 0.20 | 0.80 | Determine the orders of reaction with respect to $Br_2(aq)$ and with respect to $CH_3COCH_3(aq)$. [2] (iv) A separate experiment was carried out to determine the effect of pH on the rate of reaction. | Rate of reaction / mol dm ⁻³ min ⁻¹ | [Br ₂ (aq)]
/ mol dm ⁻³ | [CH ₃ COCH ₃ (aq)]
/ moldm ⁻³ | рН | |-----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|----| | 1.36×10^{-3} | 0.10 | 0.80 | 0 | | 1.36×10^{-4} | 0.10 | 0.80 | 1 | | 1.36×10^{-5} | 0.10 | 0.80 | 2 | - I State how the rate of reaction varies with change in pH. - II Using the table, show that the reaction is first order with respect to H⁺ ions.[1] - III State the role of H⁺ ions in the reaction. [1] - IV Write the full rate equation for the reaction, giving the units for the rate constant. [2] (QWC) [1] [1] - (b) Both boron nitride, BN, and carbon, C, form hexagonal graphite-type structures. Explain why - BN and C can both adopt the same hexagonal structure; - both BN and C exhibit lubricating properties; - C is an electrical conductor but BN is an insulator at room temperature. [6] (QWC) [2] Total [20] [1] - **5.** (a) Bordeaux Mixture is one of the earliest fungicides, first used about 1885. It can be prepared by mixing copper sulfate solution with excess limewater (calcium hydroxide solution). - (i) State what you would observe when copper sulfate solution is mixed with limewater. - (ii) Write an equation for the reaction that occurs. - (b) A sample of *Bordeaux Mixture* was analysed to determine its copper content. Firstly, it was reacted with excess potassium iodide $$2 \mathrm{Cu^{2+}} \ + \ 4 \mathrm{I^{-}} \ \rightarrow \ 2 \mathrm{CuI} \ + \ \mathrm{I_{2}}$$ and the iodine produced was then titrated against sodium thiosulfate solution. $$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$ - (i) Name the indicator used for the titration and state the colour change at the end-point. [2] - (ii) If a 31.2 g sample of *Bordeaux Mixture* required 12.25 cm³ of sodium thiosulfate solution with concentration 0.100 mol dm⁻³ Na₂S₂O₃ to react with the liberated iodine, calculate the mass of copper in the sample and hence the % Cu by mass in *Bordeaux Mixture*. Your answers should be given to **three** significant figures. [3] - (c) Copper can exist as Cu^{2+} or Cu^+ compounds. - (i) Write the full electron configurations for Cu²⁺ ions **and** Cu⁺ ions. [2] - (ii) Explain why most Cu²⁺ compounds are coloured blue in the presence of water. [4] - (iii) Briefly explain why most Cu⁺ compounds are colourless or white. [1] - (d) (i) State what would be observed, and give equations for any reactions, when tetrachloromethane, CCl₄, and silicon(IV) chloride, SiCl₄, are separately added to water. [3] - (ii) Explain why lead forms a solid chloride PbCl₂, but the corresponding CCl₂ and SiCl₂ are too unstable to exist. [2] Total [20] ### GCE A level 1095/01-A # CHEMISTRY CH5 DATA SHEET A.M. MONDAY, 28 June 2010 | | 2 | |--|---| | | | | S Block H Frogen 1 1 1 1 1 1 1 1 1 1 1 1 1 | sium Scandium 1 | sium Scandium Tiranium Vanadium Chromium Manganum Scandium Tironium Vanadium Chromium Manganum Stronium Tironium Niobium Molybdenum Technetii S S S S S S S S S S S S S S S S S S | 1 | Symbol S | sium Scandium Titanium Vanadium Chromium Banganese Iron Try Zr Nb Mo Tc Ru Try Zr Nb Mo Tc Ru Try Zr Nb Mo Mobdenum Ruthenium Sy 40 179 181 184 186 190 La V T2 T3 W Ree Os T139 | 139 | Transmin Haftium Haf | Comparison Com | Table Particular Particul | Carbon C | 1 | Telative Symbol mass Symbol Symbol Mass Symbol | |-----------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 179 50.9 50.9 Ti | 179 50.9 50.9 Ti | A | Ar-Symbols Ar- | Key Symbol Name A A A A A A A A A | Rey Rejartive February Fe | Key Table | Symbol Name atomic Symbol Name atomic Symbol Name A_1 | Color Colo | Training State S | February | February | Time Superiment Frequency Frequenc | | 179 50.9 50.9 Ti | 179 50.9 50.9 Ti | A | Ar-Symbols Ar- | Key Symbol Name A A A A A A A A A | Rey Rejartive February Fe | Key Table | Symbol Name atomic Symbol Name atomic Symbol Name A_1 | Color Colo | Training State S | February | February | Time Superiment Frequency Frequenc | | 50.9 V
Vanadium 23 92.9 Nb Niobium 41 181 Tantalum 73 | 50.9 52.0 Cr Vanadium 23 24 92.9 Nb Mo Niobium 41 181 184 Tantalum Tungsten 73 74 | \$2.0 \$4.9 \text{Cr} Mn Angana 24 \$25.0 \$95.9 \$98.9 \text{Mo} Tc olybdenum Technetii 42 \$186 \text{W} \text{W} \text{Re} \text{W} \text{Re} \text{Vmissten} \text{Renium} Tchnigsten Rhenium T74 \$75 | Ar-Symbo S2.0 | Key Symbol Name a Z n Symbol Name A Z n S S S S S S S S S | Key relative Rel | Key relative Symbol Name atomic Z number | Key relative Symbol Name atomic Z mumber | Key Telative Telative Telative Symbol Mame Ar Atomic Symbol Mame Ar Atomic Symbol Manganese Iron Cobalt Nickel Copper Zinc Standard St | Key Transport | Color Colo | February | February | | | 52.0 Cr Chromium 24 95.9 Mo Molybdenum 42 184 W Tungsten 74 | \$2.0 \$4.9 \text{Cr} Mn Angana 24 \$25.0 \$95.9 \$98.9 \text{Mo} Tc olybdenum Technetii 42 \$186 \text{W} \text{W} \text{Re} \text{W} \text{Re} \text{Vmissten} \text{Renium} Tchnigsten Rhenium T74 \$75 | Ar-Symbo S2.0 | Key Symbol Name a Z n Symbol Name A Z n S S S S S S S S S | Key relative Rel | Key relative Symbol Name atomic Z number | Key relative Symbol Name atomic Z mumber | Key Telative Telative Telative Symbol Mame Ar Atomic Symbol Mame Ar Atomic Symbol Manganese Iron Cobalt Nickel Copper Zinc Standard St | Key Transport | Color Colo | February | February | | | | | | | | | | | | | | | | ^ | |--------------|---------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|----|--------|---------|-----------|------------| | | 140 | 141 | 145 | | 150 | (153) | 157 | 159 | 163 | | 167 | 169 | 173 | 175 | | ▶ Lanthanoid | Ce | Pr | pN | Pm | Sm | Eu | РS | Tb | Dy | Ho | Er | Tm | Yb | Lu | | elements | Cerium | Praseodymium | Neodymium | Promethium | Samarium | | Gadolinium | Terbium | Dysprosium | , | Erbium | Thulium | Ytterbium | Lutetium | | | 28 | 59 | 09 | 61 | 62 | | 49 | 65 | 99 | 29 | 89 | 69 | 70 | 71 | | . • | | | | | | | | | | | | | | | | | 232 | (231) | 238 | (237) | (242) | (243) | (247) | (245) | (251) | | (253) | (256) | (254) | (257) | | ▶ Actinoid | Th | Pa | n | ďN | Pu | Am | Cm | Bk | Cţ | Es | Fm | Md | No | L | | elements | Thorium | Protactinium | Uranium | Neptunium | Plutonium | Americium | Curium | Berkelium | Californium | um | | ium | Nobelium | Lawrencium | | | 06 | 91 | 92 | 93 | 94 | 95 | 96 | 26 | 86 | 66 | 100 | 101 | 102 | 103 | ►► Actinoid elements 9 S THE PERIODIC TABLE Group