

General Certificate of Education Advanced Subsidiary Examination June 2013

Mathematics

MPC2

Unit Pure Core 2

Monday 13 May 2013 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

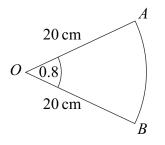
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

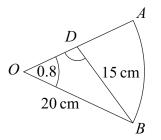
- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

places.


(2 marks)

(2 marks)

2


1	A geometric series has first term 80 and common ratio $\frac{1}{2}$.	
(a)	Find the third term of the series.	(1 mark)
(b)	Find the sum to infinity of the series.	(2 marks)
(c)	Find the sum of the first 12 terms of the series, giving your answer to two decimal	

2 The diagram shows a sector *OAB* of a circle with centre *O*.

The radius of the circle is 20 cm and the angle AOB = 0.8 radians.

- (a) Find the length of the arc AB. (2 marks)
- (b) Find the area of the sector *OAB*.
- (c) A line from *B* meets the radius *OA* at the point *D*, as shown in the diagram below.

The length of *BD* is 15 cm. Find the size of the **obtuse** angle *ODB*, in **radians**, giving your answer to three significant figures. (4 marks)

更多咨询请登录

3

- **3 (a) (i)** Using the binomial expansion, or otherwise, express $(2+y)^3$ in the form $a + by + cy^2 + y^3$, where a, b and c are integers. (2 marks)
 - (ii) Hence show that $(2 + x^{-2})^3 + (2 x^{-2})^3$ can be expressed in the form $p + qx^{-4}$, where p and q are integers. (3 marks)
 - **(b) (i)** Hence find $\int \left[(2+x^{-2})^3 + (2-x^{-2})^3 \right] dx$. (2 marks)
 - (ii) Hence find the value of $\int_{1}^{2} \left[(2 + x^{-2})^3 + (2 x^{-2})^3 \right] dx$. (2 marks)
- 4 (a) Sketch the graph of $y = 9^x$, indicating the value of the intercept on the y-axis. (2 marks)
 - (b) Use logarithms to solve the equation $9^x = 15$, giving your value of x to three significant figures. (2 marks)
 - (c) The curve $y = 9^x$ is reflected in the y-axis to give the curve with equation y = f(x). Write down an expression for f(x). (1 mark)
- 5 (a) Use the trapezium rule with five ordinates (four strips) to find an approximate value for $\int_0^2 \sqrt{8x^3 + 1} \, dx$, giving your answer to three significant figures. (4 marks)
 - (b) Describe the single transformation that maps the graph of $y = \sqrt{8x^3 + 1}$ onto the graph of $y = \sqrt{x^3 + 1}$. (2 marks)
 - (c) The curve with equation $y = \sqrt{x^3 + 1}$ is translated by $\begin{bmatrix} 2 \\ -0.7 \end{bmatrix}$ to give the curve with equation y = g(x). Find the value of g(4). (3 marks)

Turn over ►

4

6 A curve has the equation

$$y = \frac{12 + x^2 \sqrt{x}}{x}, \quad x > 0$$

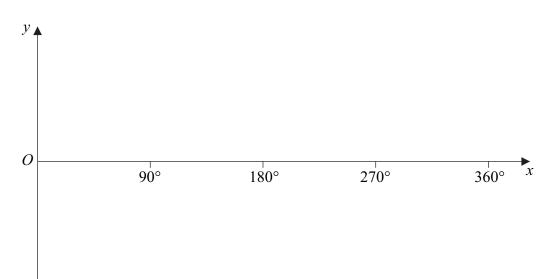
(a) Express
$$\frac{12 + x^2 \sqrt{x}}{x}$$
 in the form $12x^p + x^q$. (3 marks)

- (b) (i) Hence find $\frac{dy}{dx}$. (2 marks)
 - (ii) Find an equation of the normal to the curve at the point on the curve where x = 4. (4 marks)
 - (iii) The curve has a stationary point *P*. Show that the *x*-coordinate of *P* can be written in the form 2^k , where *k* is a rational number. (3 marks)

7 The *n*th term of a sequence is u_n . The sequence is defined by

$$u_{n+1} = pu_n + q$$

where p and q are constants.


The first two terms of the sequence are given by $u_1 = 96$ and $u_2 = 72$.

The limit of u_n as *n* tends to infinity is 24.

- (a)Show that $p = \frac{2}{3}$.(4 marks)(b)Find the value of u_3 .(2 marks)
- 8 (a) Given that $\log_a b = c$, express b in terms of a and c. (1 mark)
 - (b) By forming a quadratic equation, show that there is only one value of x which satisfies the equation $2\log_2(x+7) \log_2(x+5) = 3$. (6 marks)

- **9 (a) (i)** On the axes given below, sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$. (3 marks)
 - (ii) Solve the equation $\tan x = -1$, giving all values of x in the interval $0^{\circ} \le x \le 360^{\circ}$. (2 marks)
 - (b) (i) Given that $6 \tan \theta \sin \theta = 5$, show that $6 \cos^2 \theta + 5 \cos \theta 6 = 0$. (3 marks)
 - (ii) Hence solve the equation $6 \tan 3x \sin 3x = 5$, giving all values of x to the nearest degree in the interval $0^{\circ} \le x \le 180^{\circ}$. (6 marks)

