PH5

C	Question		Marking details	Marks Available
SEC	TION	A		
1	(a)	(i)	$C = \frac{Q}{V} \text{ understood (1) [or by impl.]}$	
			i.e Rearranging to give $V = Q/C$ or substitution of capacitance for C and charge for Q $V = 12.5(3) \text{ V} (1)$	2
		(ii)	$C = \frac{\mathcal{E}_0 A}{d}$ understood [simply quoting is not enough] (1) [substitution	
			of all quantities except d] $d = 9.44 \times 10^{-4} \text{ m [accept 0.9 mm] (1)}$	2
	(b)		$Q = Q_o \exp\left(\frac{-t}{RC}\right) \text{ understood (1) [substitution]}$	
			Taking logs correctly e.g. $\ln Q = \ln Q_o - \frac{t}{RC}$ (1)	
			Algebra e.g. $-1.9 = \frac{-t}{15 \times 10^6 \times 375 \times 10^{-12}}$ (1)	
			t = 0.01 [0.007] s (1) [Use of $log_{10} \rightarrow 0.47$: treat as calculator slip $\rightarrow 3$ marks] [Mysterious vanishing of minus sign \rightarrow slip]	4
	(c)		[Dielectric (or water)] increases C <u>or</u> allows more Q to be stored [accept: store more energy or time constant increased] (1)	
			so change in C or Q means fog or use coulometer to measure Q or use multi(meter) to measure C [or voltage] (1)	
			NB. 0 marks awarded for answers referring to conduction by water.	2
				[10]

	Question		Marking details	Marks Available		
SEC	SECTION A					
2	(a)		$B = \frac{\mu_o I}{2\pi a} \text{ understood } [\text{or } B = 4.8 \times 10^{-7} \text{T}] \text{ (1) } [\text{not } \mu_0 nI]$ either $5 \times 4.8 \times 10^{-7} \text{or } B = \frac{4\pi \times 10^{-7} \times 1.5}{2\pi \times 0.125} \text{ (1)}$	2		
	(b)	(i)	$\sin \theta = 0^{\circ} \text{ or } \theta = 0^{\circ} \text{ or } \theta = 180, \pi \text{ etc } (1)$ Travels along [parallel or opposite to] field lines (1) [NB: 2^{nd} mark implies first] "to the right" $\rightarrow 0$			
		(ii)	"to the right parallel to field" $\rightarrow 1$ bod.	2		
			$\theta = 30^{\circ} / 0.52 \text{ radian } (1)$	2		
	(c)	(i) (ii)	Arrow anti-clockwise \checkmark $Bqv = \frac{mv^2}{r} \text{ [or } mr\omega^2 \text{] [accept } r = \frac{mv}{Bq} \text{] (1)}$ $m = 4 \times 1.66 \times 10^{-27} \text{ kg and } q = \underline{2e} \text{ [e.c.f. on } q \text{] (1)}$	1		
			r = 76.08 km (1) Allow ecf on $q = 1e \text{ i.e.} \rightarrow r = 157 \text{ km } [\rightarrow 2/3 \text{ marks}]$	3		
				[10]		

Question		n	Markin	g details	Marks Available
SEC	TION	A			
3	(a)		Fither Flux changes (1) hence emf induced (1) [Because of RH rule or Faraday $\rightarrow 2^{nd}$ mark, but not 1^{st} mark] flux increases and decreases [implies 1^{st} mark] [i.e. $\frac{d\Phi}{dt}$ alternates implied](1) NB. "Change in field" not 1^{st} mark but others available]	Or B-lines being cut (1) hence emf_induced (1) [Because of RH rule or Faraday → 2 nd mark, but not 1 st mark] direction of cutting changing (1) [Not "magnet oscillating" accept "magnet changing direction [of motion]"]	3
	(b)	(i) (ii)	$V_{\rm rms} = \frac{Vo}{\sqrt{2}} = 0.5 \mathrm{V}$ Rate of change of flux (linkage) = from Faraday's [or Neuman's] law [Independent mark – must be state For 1 turn = $\frac{0.707}{200} = 0.0035(35) \mathrm{W}$	or $E = N \frac{d\Phi}{dt}$ [allow $E = \frac{\Phi}{t}$](1)	1
	(c)		NB. 0.0025 Wb s ⁻¹ [from use of <i>V</i> Stating or implying that there is a ropposes motion / due to Lenz's late Detail given, e.g. loss (dissipation) resistance, polarity of coil discusse against resistive force (1)	= 0.5 V] \rightarrow 2 if 2 nd mark awarded. magnetic field set up in the coil (1) w (1) of energy due to current or	3
					[10]

Question			Marking details	Marks Available
	CTION	A		
4	(a)		 γ (1) Needs high penetration (1) [or to irradiate shielded side of metal, or because α and β not penetrating enough etc.] [NB. 2nd mark cannot be given if 1st mark not awarded] 	2
	(b)	(i)	$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}} \text{ understood (1)}$ $\lambda = 0.1[308] \text{ year}^{-1} / 4[.14] \times 10^{-9} \text{ s}^{-1} ((\mathbf{unit})) [\text{accept Bq}] (1)$	
		(ii)	[allow ecf on \log_{10} used $\rightarrow 1.8 \times 10^{-9}$ s ⁻¹ / 0.057 year ⁻¹] [NB per year or per second] Attempt at using $A = \lambda N$ (1) [allow use of number of moles for N]	2
		(iii)	$1 \text{ mg} = \frac{1}{60} \times 10^{-3} \text{ mol or } N = 10^{19} \text{ (1)}$ $A = 4.16 \times 10^{10} \text{ Bq [or } 1.31 \times 10^{18} \text{ year}^{-1}] \text{ (1) [NB No unit penalty]}$	3
			$\frac{A}{A_o} = \frac{1}{4} (1)$ 2 half lives (implies above) (1) $t = 10.6 \text{ year } (1)$ Or $n = 2 (1)$ $t = 10.6 \text{ year } (1)$ Or $n = A_0 \text{ or } A = A_0 \text{ e}^{-\lambda t} (1)$ [used] $taking \log s (1)$ $t = 10.6 \text{ year } (1)$ Or $t = 10.6 \text{ year } (1)$	
			NB $3.3 \times 10^8 \rightarrow 2$ marks, i.e. answer quoted in seconds.	3 [10]

Question		n	Marking details	Marks Available
SEC	TION	A		
5	(a)		Conservation of A and $Z(1)$ ${}^{241}_{95}\text{Am} \rightarrow {}^{237}_{93}\text{Np} + {}^{4}_{2}\alpha(1)$ ${}^{241}_{95}\text{Am} \rightarrow {}^{241}_{96}\text{Np} + {}^{0}_{1}\alpha \rightarrow 1 \text{ mark}$	
			But not $^{241}_{95}$ Am \rightarrow $^{237}_{93}$ Np + $^{0}_{0}$ α	2
	(b)		Attempt at LHS – RHS [= 0.00608 but allow slips] (1) Mass in u × 931 (1) or $E = mc^2$ [with mass in kg] (1) = 5.66 MeV (1) ((unit)) or 9.06 × 10 ⁻¹² J ((unit))	3
	(c)	(i)	attempt at total mass of p + n (1) [e.g. = 95 m_p + 146 m_n] - 241.00471 (1) [1.95125] ×931 and ÷ 241 (1) or $E = mc^2$ and ÷ 241 = 7.5[378] MeV / nucleon (1) or 1.206 × 10 ⁻¹² J/nucleon [Slips in total mass can get first 3 marks]	
		(ii)	NB mixing up number of protons and neutrons \rightarrow 7.27 MeV/nucleon Plot answer on graph e.c.f. $\pm \frac{1}{2}$ square	4
		(11)	[7.4 – 7.6 MeV/nucleon and 238-244 for nucleon number]	1
				10

Question		Marking details	Marks Available			
SEC	ECTION A					
6.	(a)	Insert a voltmeter [V in a circle] on the diagram between front and back faces	1			
	<i>(b)</i>	Electrons feel force due to B-field [or <i>Bqv</i> or FLHR; accept <i>BIl J</i> (1) Force towards rear face [accept electrons move to rear face or into the page] (1)				
		Leaving / hence front positive (or shortage of electrons) (1)	3			
	(c)	$E = \frac{V}{d}$ (1) [or by impl.] = $\frac{8.5 \times 10^{-3}}{0.004}$ = 2.125 V m ⁻¹ (1)	2			
	(d)	$Bqv = Eq (1)$ $v = \frac{I}{nAe} \text{ (rearrange) (1)} \qquad \text{or} \qquad V_H = \frac{BI}{ntq} (1)$ $E = \frac{BI}{nAe} (1) \text{ [subst]} \qquad \rightarrow \qquad n = 5.15 \times 10^{21} \text{ m}^{-3}$ $((\mathbf{unit})) (1)$ $Max 2/4 \text{for remembering equation}$ $((\mathbf{unit}))$	4			
			10			

C	Question	Marking details	Marks Available
SE	CTION B		
7	(a)	Correct substation into speed = $\frac{\text{distance}}{\text{time}}$ (1) $\left[t = \frac{8 \times 10^8}{3 \times 10^8} \right] = 2.67 \text{ s (1) [Accept fraction } \frac{8}{3}]$	2
	(b)	$\left[\frac{t - 3 \times 10^8}{3 \times 10^8} \right]^{-2.07 \text{ s (1) [Accept fraction 73]}}$ After travelling both ways extra distance is $\lambda/2(1)$	2
		Hence destructive <u>interference</u> or <u>antiphase / completely out of phase(1)</u>	2
	(c)	use of $n\lambda = d \sin \theta$ e.g. $7 \times 640 = 815 \sin \theta$ (1) $d = 1.23 \times 10^{-5}$ m (1) [accept $^{1}/_{81500}$] any 2 of $\theta_1 = 2.99$, $\theta_2 = 5.99$, $\theta_3 = 9.00$ (1) Sensible comment, e.g. true, nearly true <u>or</u> wrong[if qualified, e.g. separation increases slightly etc.] [e.c.f.](1) [1 st mark required for 3 rd mark to be awarded]	4
	(d)	$N \times \frac{1}{2} mc^2 = \frac{3}{2} nRT \text{ or } \frac{1}{2} mc^2 = \frac{3}{2} kT \text{ (1) [or by impl.]}$ Algebra $\overline{c^2} = \frac{3kT}{m} \text{ (1) [or by impl.]}$ $\sqrt{\overline{c^2}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 300}{23 \times 1.66 \times 10^{-27}}} = [570.35 \text{ m s}^{-1}] \text{ (1)}$ NB. Mixing up m/M and n/N with correct algebra $\to 1$.	3
	(e)	 Any 3 × (1) from 0.97 GHz corresponds to Doppler shift [due to 570 m s⁻¹] / red shift / blue shift √ Sodium atom moving towards laser we get resonant absorption / wavelength [or frequency or energy] is exactly right √ ∴ slowing down is tuned or more probable etc √ If atom moving away there is a shift away from resonance / absorption less probable √ [NB "more strongly absorbed", "Doppler-shifted up 0.97 GHz", 	
		"Match the resonance frequency" are phrases in the passage.]	3

(Question	Marking details	Marks Available
SE	CTION B		11 vanabie
7		Photon energy = $\frac{hc}{\lambda}$ or hf and $c = \frac{f}{\lambda}(1)$ [= 3.825×10 ⁻¹⁹ J] No. of photos/sec = power ÷ photon energy (1.93×10 ¹⁰) (1) Momentum of 1 photon = $h/\lambda = 1.275 \times 10^{-27}$ kg ms ⁻¹ (1) [indep. mark] Force = $1.93 \times 10^{10} \times 1.275 \times 10^{-27} \times \sin 30 = 1.23 \times 10^{-17}$ N (1) [Slip with nm/m \rightarrow allow ecf] Alternative Method:	
		Force = $\frac{\text{Power}}{c}$ (1) [or by impl.] = 2.467×10 ⁻¹⁷ N (1) Force upwards (on particle) = Force down on light or reference to F = rate of change of momentum(1) = 2.467×10 ⁻¹⁷ × sin 30° = 123×10 ⁻¹⁷ N (1)	4
	(g)	 Good Lasts long time [accept: sustainable / renewable, lasts 000s years] No nuclear waste [accept: no harmful waste but not "no waste"] High concentration of energy e.g. per kilogram No carbon emissions / use less non-renewables Abundance of fuel / deuterium [and lithium] [not tritium → sif] Could be profitable soon Bad Tritium from where / needs generation Does not work yet / huge energy in for little out [needs slightly more than "hasn't got to breakeven"] Induced nuclear waste. Set-up / research costs Possible military use Any 2 or 3 advantages and/or disadvantage → 1 4 statements with at least 1 of each (1) 	2
			[20]

(Question		Marking details	Marks Available
SE	CTIO	N C		
8	(a)		Laminated (or equivalent) (1) to prevent eddy currents (1) Suitable material for core (1) to avoid magnetising/hysterises losses (1)	4
	(b)	(i)	First mark for diagram with V_L , V_C , V_R perpendicular with V_L , opposite V_C [or impedances] (1)	
			resultant reactive impedance is $\omega L - \frac{1}{\omega C}$ [or $V_{\text{react}} = V_L - V_C$],	
			shown on the diagram(1)	
			Resultant [justified] = $\sqrt{\text{etc.}(1)}$	
			or $V = \sqrt{(V_{L} - V_{C})^{2} + V_{R}^{2}}$ and $V = \sqrt{(I\omega L - \frac{I}{\omega C})^{2} + I^{2}R^{2}}$	3
		(ii)	$f = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$ or $\omega = \sqrt{\frac{1}{LC}}$ or $\omega L = \frac{1}{\omega C}$ (1)	
			Convincing substitution and/or algebra (1)	2
		(iii)	$I = \frac{V}{R} = \frac{12}{280} (1)$	
			Since all voltage across R or V_L and V_C cancel (or X_L and X_C) (1)	2
		(iv)	Equation used e.g. $Q = \frac{\omega L}{R}$ or $\frac{1}{\omega CR}$ used (1)	
			Answer = 2.97 or (3) (1)	2
		(v)	Attempt at substitution e.g. accept $\sqrt{\left(10.35 \times 64 - \frac{1}{10.35 \times 9.2}\right)^2 + 280^2}$	
			$Z = 1286 \Omega (1)$	
			$I = \frac{V}{Z}(1) \text{ [independent mark]} = 9.3 \text{ mA (1)}$	4
		(vi)	ωL doubled and $\frac{I}{\omega C}$ halved(1)	
			$X_{\rm C}$ and $X_{\rm L}$ switched (1)(cf(v)) $(416-1671)^2 = (1671-416)^2$ or equivalent –ve number squared. (1) Alternative: $X_{\rm C} = 1671$ and $X_{\rm L} = 416$ and $R = 280$ [used or implied](1) $Z = 1286(\Omega)$ – clearly shown (1)	
			$3^{\text{rd}} \text{ mark} - \text{noticing } X_{\text{C}} \text{ and } X_{\text{L}} \text{ swapped.}(1)$	3
				[20]

(Question		Marking details	Marks Available
9	(a)	(i)	I. Studied reflected light (from glass plate) (1) Reflection from 2 nd plate depends on orientation (not just angle of inc.) / Light asymmetrical about direction of travel / Reflected light polarised (1) II. Developed wave theory mathematically (1) accounted for polarisation by reflection or double refraction or	2
		(ii)	diffraction patterns of various obstacles or why we cannot see around corners (1) • Requires stiff (or solid) medium (where light travels) (1)	2
			• which would also support longitudinal waves but not observed or would prevent movement of 'ordinary' objects. (1)	2
	<i>(b)</i>	(i) (ii) (iii)	Magnetic fields – rotating vortices (1) Electric fields – stress (or strain) in vortex material (1) Density and stiffness His ether (or equations) predicted $c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}}$ (1) Experiment confirmed this (within present inties) (1)	2
		(iv)	Experiment confirmed this (within uncertainties).(1) Oscillating <i>E</i> and <i>B</i> fields. (1) <i>E</i> and <i>B</i> at right angles to each other and to the propagation direction. (1)	2
	(c)	(i) (ii)	Principle of Relativity understood (either by statement or implied) (1) Not consistent as laws [of E-M] would have special form in this frame (also implies first mark). (1) I. 6.39 µs	2 1
			II. $\Delta \tau = \Delta t \sqrt{1 - \frac{v^2}{c^2}} $ (1) = 0.625 µs (1) [65.3 µs \rightarrow 0 marks] III. 0.706 µs (1)	2
			approximately 10% (or 13%) out (1) [or any other correct and relevant remark]	2
				[20]

C	Question		Marking details	Marks Available
10	(a)	(i)	LCS – largest plastic deformation	1
Α		(ii)	QAS – highest breaking stress	1
	(b)		All are same / similar from initial gradients.	1
	(c)		HCS has greater strength and stiffness (1)	
			Carbon in (crystal) lattice (1)	
			Hinders/opposes/stops dislocation movement (1)	4
			Hence more opposition to plastic deformation in HCS (1)	4
	(d)	(i)	$\frac{1}{2}mv^2 = \frac{1}{2}Fx(1) \times \frac{1}{4}(1)$	
			$m = \rho A l(1) + \text{convincing algebra}(1)$	4
		(ii)	$\varepsilon = 0.002 (1)$	
			$v = \frac{1}{2} \sqrt{\frac{700 \times 10^6 \times 0.002}{8000}} = 6.6 \text{ m s}^{-1} \text{ [answer] (1)}$	2
		(iii)	Accept either LCS or QAS with sensible reason: e.g. LCS has a higher breaking speed (1) because the area under the	
			graph is greater / ε at breaking is much bigger (1)	
			or QAS has a higher speed (1) because the area under the graph in	
			the elastic region is bigger (1)	2
В	(a)		$2.6\rightarrow2.7$ GPa from the graph (1)	
			8.3 → 8.65 kg (1)	2
	(I ₂)		This fibres have forces over a feeting (1)	
	<i>(b)</i>		Thin fibres have fewer surface imperfections (1) Very thin fibres have no surface imperfections (1)	2
			very unit flores have no surface imperfections (1)	2
	(c)		Thin glass fibres encased in resin / epoxy / plastic material	1
				[20]

Question		n	Marking details	Marks Available
11	(a)	(i)	Same shape, below and longer minimum λ_0 (1)	2
		(ii)	peaks in same place (1) Peaks/spikes/line spectrum move.	2 1
		(iii)		1
			$eV = \frac{hc}{\lambda}(1)$	
			$\lambda = 1.66 \times 10^{-11} \mathrm{m} (1)$	2
		(iv)	P = IV = 9375 W (1)	
			99.5% heat = 0.995 × 9375 = 9328W (1)	2
			Or comment that roughly all 9375W dissipated as heat.	2
	<i>(b)</i>		CT detector(s) rotate (1) about patient / analysis point.	
			Multiple detectors output to computer (1)	
			Series of 2D images obtained or 3D image obtained (1)	3
	(c)		Radio waves [2-100 MHz] (1)	
			Resonate or Same/match frequency of [hydrogen] nuclear rotation [or	
			precession]. (1) Causes them to flip/change (1) [Not just: change spin]	3
			Causes them to imprehange (1) [Not just, change spin]	3
	(d)	(i)	crystal deforms / vibrates [when alternating p.d. applied]	1
		(ii)	$\frac{\Delta \lambda}{\lambda} = \frac{2v}{c}(1)$	
			$v = 0.9 \text{ m s}^{-1} (1) \text{ [e.c.f. on missing factor of 2]}$	2
	(e)	(i)	Mention of free radicals (1) [or equivalent, e.g. produces	
			chemicals/ions/atoms which react/are highly reactive].	
			Damages DNA/cells/molecules (1)	2
		(ii)	Absorbed dose = energy (absorbed) per unit mass.	2
			Dose equivalent = absorbed dose \times Q[uality] factor.	2
				[20]

Question		n	Marking details	Marks Available
12	(a)	(i) (ii)	Power = solar constant × area [or by impl.] (1) = $1.0686 \times 10^{10} \text{ W} / 1.0686 \times 10^{7} \text{ kW} / 10.7 \text{ GW or equiv (1)}.$	2
		(11)	$P = \sigma A T^4$ understood [accept $5.67 \times 10^{-8} \times A \times 5778$] – i.e. 2 terms identified although missing (1) $P = 4\pi r^2$ quoted (1) $P = 3.85 \times 10^{26}$ W (1)	
			Solar constant = $\frac{3.85 \times 10^{26}}{4\pi \times (1.496 \times 10^{11})^{2}} [=1368 \text{ W m}^{-2}]$	4
	(b)		Hours in one year = $24 \times 365[.25]$ [or by impl.] (1) Total units = $1.0686 \times 10^7 \times 24 \times 365 \times 0.4$ [or by impl.] (1) Money = units $\times 0.2 = £7.5$ billion / 7.5×10^{11} p /£7.489 $\times 10^9$ (1)	
	(c)		Volume = area×thickness [or by impl.] (1) Mass = density×volume [or by impl.] (1) [manip] Mass = 4.95×10^6 kg (1)	
	(d)		$4.95 \times 10^6 \div 2500 = 198 \text{ missions [or by impl.] (1) [ecf from (c)]}$ $\times 350 \times 10^6 = \text{\textsterling } 69.3 \text{ bn [or equiv.] (1)}$	2
	(e)		Heat engines inefficient [or by impl.] (1) Since $1 - \frac{T_1}{T_2} \approx 1 - \frac{300}{400} \approx 0.25$ (1) "which is poor" implies first mark.	
			NB. T_2 in range 373 – 1700 K and T_1 in range 273 – 900 K [$< T_2$]	2
	(f)		Reasonable since costs recovered in 9/10 years (1) (ignoring time for 200 shuttle missions) + Any 3 × (1) good points:	
			 Not weather dependant ✓ Solar power at night ✓ Less/no atmospheric absorption by microwaves ✓ Time for 200 shuttle missions ✓ 	
			• Shuttle program ended ✓	4
				[20]