G484 The Newtonian World

Question		ion	Expected Answers	ected Answers Marks Additional guidance	
1	а	i	Force is proportional to the rate of change of momentum	B1	Allow "equal" instead of proportional, allow
			(QWC This mark can only be scored if momentum is spelled correctly)		"change in momentum over time" (WTTE)
					Do not allow F = ma or in words
		ii	When one body exerts a force on another the other body exerts an equal (in		Must refer to two bodies. Do not allow a bare
			magnitude) and opposite (in direction) force on the first body (WTTE)	B1	"Action and reaction are equal and opposite".
	b	i	area: number of squares correctly counted: 20 - 24 (500 – 600)	C1	First mark for correct number of squares
			= 2.2 Ns {allow 2.0 to 2.4}	A1	Second mark for correct conversion to Ns
					If 2 Δ s assumed, area = 1.68 Ns and scores
					1 mark
					1680 scores 0 (2 errors) but 2200 scores 1
					mark
		ii	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		iii	recall of Impulse = change in momentum OR I = mv OR mv -mu	C1	Allow 'Area = mv'
			$(mv = 2.2 hence v = 2.2/0.046) v = 47.8 ms^{-1}$ (hence about 50)	A1	Allow ecf from cand's value for (b)(i):
			(2.0 gives 43.5, 2.1 45.7, 2.3 50, 2.4 52.2)		e.g. mv = 1.68 v = 36.5 ms ⁻¹ and scores 2
					marks
					$mv = 2200 v = 47800 ms^{-1} also scores$
		-			2marks! (<u>ecf</u>)
		iv	initial horizontal velocity = $50\cos 42 = (37.2 \text{ ms}^3)$	C1	Allow 1 mark for correct identification of
			initial vertical velocity = $50\sin 42 = (33.5 \text{ ms}^3)$	C1	cosine and sine components of v, without
			time taken to reach maximum height = $33.5/9.8$ (= 3.41 s)	C1	substitution.
					Allow ect for cand's value of v throughout
			total time to reach ground = $2x \ 3.41 = 6.82 \ s$ hence distance = $50\cos 42x$ total	A1	e.g if 47.8 is used for v, distance = 232 m and
			time = 37.2x6.82 = 253 m		this scores <u>four</u> marks.
					IT 47800 IS USED DISTANCE = $2.32 \times 10^{\circ}$ m!
			any valid assumption: eg no air resistance / horizontal velocity is constant/	BI	Also allow "anhy the growtestional force is
			acceleration due to gravity is 9.8 (or 10) ms^{-2} / ball follows a parabolic or		Also allow "Only the gravitational torce is
			symmetrical path (WTTE).		acting no friction only gravity
			Total	12	

Question		ion	Expected Answers	Marks	Additional guidance
2	а	i	(v = 2πr/t) t = 2π60/0.26 = 1450 s	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³ Do not allow a bare 1.5 x10 ³
		ii	(ii) correct substitution into F =mv ² /r: eg F = (9.7x10 ³ x0.26 ²)/60 F = 10.9 N	C1 A1	Allow 11 N
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow
		ii	 Greatest reaction force is at C because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE) Least at A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE) 	M1 A1 B1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark. They must make correct reference to the resultant force that provides the required centripetal force/acceleration.
					Allow answers using the equation $F = mv^2/r$ such as N _c - mg (at C) = centripetal force OR mv^2/r OR mg +N _A (at A) = centripetal force OR mv^2/r
			Total	7	

Question		on	Expected Answers	Marks	Additional guidance
3	а		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	B1 B1	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	(mg = GMm/r ² and hence) $M = gr^{2}/G$ correct substitution $M = 24.9x(7.14 \times 10^{7})^{2}/6.67x10^{-11}$ $= 1.9 \times 10^{27}$ Kg (i.e about $2x10^{27}$)	C1 M1 A1	Equation needs to be rearranged as shown for C1 mark
		ii	correct substitution into V= $(4/3)\pi r^3 = (4/3)\pi (7.14 \times 10^7)^3 \{= 1.52 \times 10^{24} \text{ m}^3\}$ density = mass/volume = 1.9 x10 ²⁷ /1.52 x 10 ²⁴ = 1250 kg m ⁻³	C1 A1	If m= 2×10^{27} kg is used d = 1312 scores 2 marks
			Total	7	

Qu	Question		Expected Answers	Marks	Additional guidance		
4	а		The resultant force is zero (WTTE) Forces are weight and force from the spring (allow tension)	B1 B1	For the first mark allow - sum of forces is zero, - upward force = downward force, - forces cancel each other BUT do not allow forces are balanced Allow force of gravity for weight		
	b	i	acceleration is (directly) proportional to displacement and is directed in the opposite direction to the displacement. (WTTE)	M1 A1	allow $a=-(2\pi f)^2 x$, provided a and x are identified and –ve sign must be explained. Do not allow "acceleration is prop to negative displacement for second mark. Allow always towards the equilibrium position		
		ii	x= acos 2π ft $\Rightarrow 2\pi$ f = 7.85 (expressed in any form) f = (7.85/ 2π) = 1.25 (1.249Hz)	M1 A1	Do not allow use of Fig 4.2 to show T= 0.8s and hence f=1.25 Hz. This scores 0.		
		iii	correct subst ⁿ in $V_{max} = (2\pi f)A \Rightarrow V_{max} = 2\pi x 1.25 x 0.012$ $V_{max} = 0.094 \text{ ms}^{-1}$	C1 A1	Many will forget to change 12 mm into 0.012m and have $v = 94 \text{ ms}^{-1}$ this scores 1 mark.		
	С		roughly sinusoidal graph of <u>correct period</u> ie 0.8s <u>90° out of phase</u> with displacement graph (i.e. starts at origin with -ve initial gradient) <u>maximum velocity</u> correctly shown as 0.094 {allow ecf from (iii)}	B1 B1 B1			
			Total	11			

Question		on	Expected Answers	Marks	Additional guidance
5	ai		correct substitution in E = mc $\Delta\theta$: eg E = 0.08x4180x40	C1	Allow 80x4180/0.05x2460 (13376/4.92) for this
			ratio = 0.08x4180x40/5 x 10 ⁻⁵ x2460x40 = 2.7(2) x 10 ³	A1	C1 mark.
			· · · · · · · · · · · · · · · · · · ·		1: 2700 does not score the second mark.
		ii	Any valid advantage: eg		
			car cooling systems	B1	First mark for valid situation
			because it absorbs large amounts of heat for a small rise in temp	B1	Second mark for correct explanation of <u>why</u> the
			OR ideal fluid for central heating systems		high value of the shc is helpful.
			because it releases large amounts of heat for a small drop in temp.		
			OR helps to maintain constant body temperature		
			since body is mainly water which absorbs lots of heat for small temp rise		
	b		labelled diagram (2 marks):	-	
			inquid in vessel with <u>electrical</u> heater (submerged) and thermometer	B1	Allow use of joule meter if convincingly
			annieler connected in senes between supply and neater AND volumeter	B1	connected to heater and power supply i.e. 2
					wires from power supply two wires to heater
			list of measurements (3 marks):		
			mass of liquid.	B1	Allow such things as "find mass" "known mass"
			initial and final temperature/change of temp (of the liquid)	B1	Allow Such things as the mass, known mass,
			I, V and t values OR energy meter readings OR power and time	B1	nower" etc.
			explanation (1 mark):		
			$E = mc\Delta\theta$ rearranged to $c = E/m\Delta\theta$	B1	
			uncertainties (2 marks) each stated with explanation of remedy: e.g.		Allow ItV/mΔθ.
			- neat losses (makes E or $\Delta \theta$ uncertain) (solved by) insulating beaker/use iid		Do not allow "repeat the experiment".
			- Taise temp reading (solved by) stir the liquid	B1	Give credit for valid suggestions if mentioned anywhere in the description of the experiment.
			- temp continues to rise after neater switched off measure highest value	B1	
			- inermal capacity of vessel (solved by) take this into account in calculation	max 2	· · · · · · · · · · · · · · · · · · ·
			Total	12	

G484

Mark Scheme

January	2010
---------	------

Question		n	Expected Answers	Marks	Additional guidance
6	а		 (n) number of <u>moles</u> (T) absolute temperature OR thermodynamic temp OR temp measured in Kelvin 	B1 B1	Accept K for Kelvin
	b	i	(When gas is heated) molecules gain KE/move faster this would cause more collisions/sec (with the walls) collisions exert more force/greater change in momentum per collision For constant pressure fewer collisions/sec are required Constant pressure is achieved by the increase in volume OR with a bigger volume there are fewer collisions/sec	B1 B1 B1 B1 B1 <i>max 4</i>	If no reference to <u>rate</u> of collisions, max of 3 marks This must be explained fully but can be done with reference to $P = (1/3)\rho < c^2 >$
		ii	correct substitution in pV/T = constant: OR V/T = constant e.g. $1.2x10^{-4}$ /293 = V/363 V= (363/293)x1.2x10^{-4} = 1.49 x10^{-4} m ³ .	C1 A1	Both temps must be in Kelvin. Allow 1.5 x 10^{-4} m ³
	C		Use of $1/2m < c^2 > = 3/2 \text{ kT}$ Correct substitution: $\sqrt{} = \sqrt{(3kT/m)} = \sqrt{(3x1.38 \times 10^{-23}x363/4.7x10^{-26})}$ $\sqrt{} = 565 \text{ ms}^{-1}$	C1 C1 A1	If 90 [°] C is used $\sqrt{\langle c^2 \rangle} = 282 \text{ ms}^{-1}$ and scores 2 marks Allow 570 ms ⁻¹ If they do not square root, they get 319225 ms ⁻¹ and score 2 marks
			Total	11	