CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

15317669092

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

P	age 4	Mark Sche	Syllabus	Paper						
Ŀ	~ 3 ~ "	Cambridge International AS/A Leve		cto	ber/November 2014	9709	63			
1	1 $z = -2.326$ $\frac{250 - 260}{\sigma} = -2.326$ $\sigma = 4.30$			3	± 2.325 to ± 2.33 seen Standardising and = or Correct ans	ardising and = or < their z , no cc, sq, sq t				
2		0.7 - 2.4 + 2.2 - 0.5 + 6.3 + 4.9 + 0 + 0.3 = 11.5	B1	1						
	(ii)	(0.72 + 2.42 + 2.22 + 0.52 + 6.32 + 4.92 + 0.32) = 75.13 (75.1)	B1	1						
	(iii)	mean = 63.4375 Variance = $75.13/8 - (11.5/8)^2$ = 7.32	B1√ M1 A1	3	ft 62 + their (i)/8 their(ii)/8 - $((i)/8)^2$ correct answer					
		OR mean = 507.5/8 = 63.4375 Var = 32253/8 - 63.4375 ² = 7.32	B1 M1 A1		subst in correct varianc formula correct answer – allow 7.325					
					Marks can be awarded 'contradicted' by furthe	., .,	f not			
3	(i)	$max = 12P(12) = (0.7)^{12} = 0.0138$	B1 B1	2	(Implied by P(12) with Accept 0.014	power 12)				
	(ii)	P(fewer than 10) = 1- P (10, 11, 12) = $1 - {}^{12}C_{10} \times (0.7)^{10} (0.3)^2 - 12 \times (0.7)^{11} (0.3)$ - (0.7) ¹²	M1		Binomial term ${}^{12}C_r(0.7)$ ${}^{12}C_r(p)^r(q)^{12-r}, 0.99 \le p$					
		= 1 - 0.2528 = 0.747	A1 A1	3	Correct unsimplified ex Correct answer	xpression oe				

Pa	ige :	5	Mark Sche	eme		Syllabus	Paper	
	Ŭ.	9709	63					
			bridge International AS/A Leve			·		
4	(i)	Stem	leaf	B1	Correct stem (or revers	sed order)		
		1 2 3 4	4 5 7 8 9 9 1 2 2 3 4 5 6 6 8 8 0 2 6 8 1 2 5 6 7	B1	Correct leaves, ordered with ¹ / ₂ 'column' tolera	ed in numerical sequence prance		
	Key 1 4 represents 14 glasses (of water)			B1 3	Key must include 'glasses' or similar drinking item			
10		LQ = 20	Med = 26 UQ = 37 30 40 50 Glasses of water	B1 B1 B1√ B1 B1 5	Correct median Correct quartiles Correct on diagram ft a quartiles. Linear scale based upo Correct end points of a through box Linear axis, label, both	n 3 quartiles ttached whisl	plotted kers not	
3 qu End	SC No values stated 3 quartiles on diagram in correct relative positions End points of attached whiskers not through box correct relative to quartiles			B2 B1				
5	(i)		$= P\left(z < \frac{1.2 - 1.9}{0.55}\right) = P(z < -1.2727)$ 1.273) = 1 - 0.8986	M1	Standardising for wt 1. May be awarded in (ii) Accept 0.102			
		= 0.1014	· · · · ·	A1	First correct proportion	n seen		
			(1.0909) = 1 - 0.8623	A1	Second correct proport	ion seen		
			wt < 2.5) = 1 – 0.101 – 0.138	M1	Third proportion $1 - $ th proportions or correct a			
	= 0.761				proportion Correct answer or $1 - t$ proportions	<i>heir</i> 2 previo	us correct	
	(ii) $P(x > k) = 0.8 + 0.1377 = 0.9377$ z = -1.536			M1 A1	Valid method to obtain ± 1.536 seen accept 3st 1.54	· /	· /	
		-1.536	$=\frac{k-1.9}{0.55}$	M1	Attempt to solve equat area z value, k , 1.9 and		'correct'	
		<i>k</i> =1.06		A1 4	Correct answer or roun	ding to 1.05		

www.qyconsult.com

P	age 6	Mark Sche	me			Syllabus	Paper
	uge e	Cambridge International AS/A Leve		cto	ber/November 2014	9709	63
L							
6	(a)	$1^{*****3} \text{ or } 3^{****1} \text{ or } 2^{****2}$ = $6^5 \times 3$ = 23328			Mult by 6 ⁵ (for middle 5 dice outcomes) Mult by 3 or summing 3 different combinatio (for end dice outcomes) Correct answer accept 23 300		
	(b) W J H 1 1 $7 = {}^{9}C_{1} \times {}^{8}C_{1} \times 1 = 72$ 1 7 $1 = {}^{9}C_{1} \times {}^{8}C_{7} \times 1 = 72$ 7 1 $1 = {}^{9}C_{7} \times {}^{2}C_{1} \times 1 = 72$ 1 3 $5 = {}^{9}C_{1} \times {}^{8}C_{3} \times 1 = 504$ mult by 3! 3 3 $3 = {}^{9}C_{3} \times {}^{6}C_{3} \times 1 = 1680$				Multiplying 3 combinations (may be implied) 1 unsimplified correct answer (72, 504, 1680, 216 or 3024) A 2 nd unsimplified different correct answer Summing options for 1,1.7 or 1,3,5 oe (mult by 3 or 3!) Summing at least 2 different options of the 3		
		Total 4920			Correct ans		
		If no marks gained Listing all 10 different outcomes			If games replaced M1M1M1 max availab If factorials used M0M1M1 max available		
7	7 (a) (i) $P(X=3) = P(GRR) + P(RGR)$				Mult 3 probs		
		$\frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$	M1		Summing 2 options		
		$\frac{1}{3}$ AG	A1	3	Correct working with a and fraction sequencing		stification
	(ii) X 2 3 4 Prob $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$		B1		Values 2, 3, 4 only in ta Condone X=0,1 if P(X)		
		$P(X=2) = P(RR) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$			One correct prob other	than (i)	
		$P(X=4) = 1 - \left(\frac{1}{6} + \frac{1}{3}\right) = \frac{1}{2}$ Or P(GGRR) + P(RGGR) + P(GRGR) $= \left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) \times 3 = \frac{1}{2}$	В1√	3	Second correct prob ft probs	1 – their prev	ious 2

www.qyconsult.com

Page 7	Mark Sche	Syllabus	Paper					
Cambrie	dge International AS/A Leve	cto	ber/November 2014	9709	63			
<u> </u>	nge at least 2 O) = $3O$							
$P(at \ least \ 2O)$ $P(3 \ orange) = P(OOO)$ $= \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7}$ $P(at \ least \ 2O) = P(YOO) + P(OYO) + $		M1 A1		Atttempt at P(OOO) on not added Correct unsimplified nu	-			
$P(OOY) = \frac{2}{7} \times \frac{5}{6}$	$Y + \frac{2}{7}$ $\frac{4}{5} + \frac{5}{7} \times \frac{2}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{4}{6} \times \frac{2}{5} + \frac{2}{7}$	M1		Attempt at P(at least 20 factor options	0) sum 3 or 4	three-		
$=\frac{6}{7}$		A1		Correct unsimplified an	iswer seen an	ywhere		
P(30 a	at least 2O) = $\frac{2}{7} \div \frac{6}{7} = \frac{1}{3}(0.333)$	A1	5	Correct answer evaluate	ed			
$\frac{\text{Alternative 1}}{3 \text{ Orange}} = {}^{5}C_{3}$		M1		Attempt at combination added	C			
At least 2 Orange = 50	$C_2 \times {}^2C_1 + {}^5C_3$	A1 M1		Correct unsimplified nu Attempt at combination	ons for at least 2 orange			
-		A1		condone omission of + ⁵ Correct unsimplified an				
P(3O at least 2O) =	$\frac{{}^{5}C_{3}}{{}^{5}C_{2}\times^{2}C_{1}+{}^{5}C_{3}} = \frac{1}{3}$	A1	5	Correct answer evaluate	ed			
$\frac{\text{Alternative 2}}{\text{No Yellow}} = {}^{2}C_{0}$		M1 A1		Attempt at combinations for 0 yellow oe, n added Correct unsimplified num of a fraction				
No more than 1 Yello	$W = {}^{2}C_{1} + {}^{2}C_{0}$	M1		Attempt at combination yellow. Condone omiss	is for no mor ion of +2C0	e than 1		
P(3O at least 2O) =	$\frac{{}^{2}C_{0}}{{}^{2}C_{1}+{}^{2}C_{0}} = \frac{1}{3}$	A1 A1	5	Correct unsimplified an	ified answer seen anywhere evaluated			
	Accuracy Mark earned	M1		Attempt at P(OOO) one not added		-		
$P(3O) = \frac{5}{7} \times \frac{5}{7} \times \frac{5}{7} = \frac{1}{7}$	343	A1		Correct unsimplified nu	im of a fracti	on		
$P(\text{at least 2O}) = \frac{5}{7} \times \frac{5}{7}$	$\frac{5}{7} \times \frac{2}{7} \times ^{3} C_{2} + \left(\frac{5}{7}\right)^{3}$	M1		Attempt at P(at least 20 factor options				
	5	A1 A1	<u>,</u>	Correct unsimplified se	en anywhere			
$P(3O \mid at \ least \ 2O) = \frac{5}{11}$			4 ax	Answer evaluated				