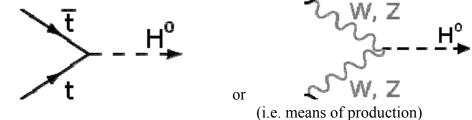
PH5

Question		Marking details	Marks Available
A1	(a)	$ \begin{cases} {}^{14}_{6}C \text{ has } 8n + 6p \text{ [or implied] (1) [8p + 6n \rightarrow slip, allow e.c.f.]} \\ \text{attempt at } 8n + 6p - 13.99995 \text{ (1) [=0.113026]} \\ \times 931 \text{ and } \div 14 \text{ or use of } E = mc^2 \text{ and } \div 14 \text{ (1)} \\ = 7 \cdot 5 \text{ MeV[/nucleon]} \text{ (1) [or } 1 \cdot 2 \times 10^{-14} \text{ J [/nucleon]]} \text{ ((unit))} \end{cases} $	4
	<i>(b)</i>	$13 \cdot 99995 - 13 \cdot 999234 - 0 \cdot 000549 \text{ i.e. attempt at mass defect (1)} \times 931 \text{ MeV} \qquad \text{or use of } E = mc^2(1) = 0 \cdot 155 \text{ MeV} \qquad \text{or } 2 \cdot 5 \times 10^{-14} \text{ J}(1)$	3
	(c)	(from conservation of mom) $v_{\beta} > v_{N}$ (1) or $v_{\beta} = 26000v_{N}$ (since) $M_{N} > M_{\beta}$ (1) or $M_{N} = 26000M_{\beta}$	
		since $E_k = \frac{1}{2}mv^2$, β particle has most of the energy (1)	
		or $E_{\beta} = 26000 E_{\rm N}$	3
			10
A2	(a)	137056-1Conservation of A and Z (1)All figures correct (1)	2
	<i>(b)</i>	$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}} (\text{or } T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}) \text{ either eq}^n \text{ by } \underline{\text{itself}} \text{ or used [e.g. } \frac{0.69}{30}] (1)$	2
		$\lambda = \frac{\ln 2}{30 \times 365 \times 24 \times 60 \times 60} \qquad (1) \left[= 7.3 \times 10^{10} \right]$	Z
	(c)	$A = \pm \lambda N \text{ stated or used (1)}$ = 7.3×10 ⁻¹⁰ (e.c.f.)× $\frac{1}{0.137}$ ×6×10 ²³ (1) [= 3.2×10 ¹⁵ Bq]	2
	(d)	[All] β absorbed [however expressed] \checkmark or no γ present [implies β absorbed]	1
	(e)	$A = A_0 e^{-\lambda t} \text{ [or } A = A_0 2^{-n} \text{]}$ $1000 = 3.2 \times 10^{15} e^{-\lambda t} \text{ or } 3 \times 10^{15} e^{-\lambda t} (1) \text{ [or } 1000 = 3 \times 10^{15} \times 2^{-n} \text{]}$ taking logs correctly(1) e.g. ln 1000 = ln [3.2 × 10^{15}] - \lambda t \text{ or equiv.} $\begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	3
		$t = \frac{1}{\lambda} \ln 3.2 \times 10^{15} = 4.1 - 4.9 \times 10^{10} \text{ s} [1240 - 1544 \text{ years}] (1)$	10

Ques	stion		Marking details	Marks Available
A3	(a)		$C = \frac{\varepsilon_0 A}{d} \text{ used [2 quantities inserted, e.g. } C = \frac{\varepsilon_0 \times 0.163}{0.35} \text{](1)}$ C = 4.1 nF (1)	2
	(b)	(i) (ii)	5 μC ✓ 3mJ ✓	1 1
	(c)		$t_{\frac{1}{2}} [= CR] = 2.77 \text{ ms} (1)$ $\frac{1}{2}Q_0 = Q_0 e^{-\frac{t}{CR}} (1)$	
	(d)		T = 1.92 ms (1) Since $E = \frac{1}{2}CV^2$ or $\frac{1}{2}\frac{Q^2}{C}$ or $\frac{1}{2}QV$ (1)	3
	(u)		E drops off more quickly (1)	2
	(e)		$ \begin{cases} F = Eq \\ a = \frac{F}{m} \\ E = \frac{V}{d} \end{cases} $ all three \rightarrow 2 marks $ 2 \rightarrow 1 \text{ mark} \\ \text{also, subtract 1 mark for} \\ \text{for each 2 useless unused} \\ eq^{\text{ns}} \end{cases} $ NB. $a = \frac{Ee}{m} = \frac{eV}{md} \checkmark \checkmark$	
			$a = \frac{1200 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31} \times 0.35 \times 10^{-3}} (1) [= 6.03 \times 10^{17} \mathrm{m s^{-2}}]$	3
	(1)	(i)		
			$v \left[= \sqrt{2 \times 6 \times 10^{17} \times 0.175 \times 10^{-3}} \right] = 1.45 \times 10^7 \mathrm{m s^{-1}} $ (1)	2
		(ii)	$E = \frac{1}{2}mv^2 \text{ used } (1) \rightarrow 9.6 \times 10^{-12} \text{ J}$ $\div e \text{ [gives 600 eV] (1)}$ Alternative method is using $E = Vq$, $V = 0.6 \text{ kV} \text{ [and } q = e \text{]} - \text{or other convincing argument] (1)}$	3
		(iii)	v = u + a t (1) 1.45 × 10 ⁷ = 0 + 6 × 10 ¹⁷ t (1) $\therefore t = 24.2 \text{ ps (1)}$ or $x = ut + \frac{1}{2} at^{2} (1)$ 0.175 × 10 ⁻³ = 0 + $\frac{1}{2}$ 6×10 ¹⁷ $t^{2} (1)$ $\therefore t = 24.2 \text{ ps (1)}$	
			[or equivalent solution based upon $x = vt - \frac{1}{2}at^2$]	
			NB. Use of $t = \frac{v}{d} = 12.1 \text{ ps} \rightarrow 0 \text{ marks}$	3 20

更多咨询请登录


Ques	stion		Marking details	Marks Available
A4	(a)		force on electrons is downwards [or electron deficiency on top] (1) due to Fleming's LHR [or stating that current is to the right] (1)	2
	<i>(b)</i>		Voltmeter symbol shown connected between top and bottom faces \checkmark	1
	(c)		Bqv = Eq (1) [not $Blv = Eq$, but accept $Bev = Eq$] $Bqv = \frac{V_{\rm H}}{d}q$ (1) [i.e. using $E = \frac{V_{\rm H}}{d}$] + convincing algebra (1)	
			a a la	3
	(d)	(i)	$n = 15\ 000 \div 2\ (1)$	
			$I\left[=\frac{B}{\mu_0 n}\right] = 2.3 \text{ A (1) [allow 1 mark for } 1.15A \text{ missing first step]}$	2
		(ii)	In the middle / inside [of the solenoid] (1) with front face \perp^{r} (1)[to axis of solenoid or B-field]	
			[NB: "inside current" ×, "between the coils" ×]	2
				9
A5	(a)		Area (inside hoop) changes (1) or [sides of] hoop cut (1) Magnetic flux changes (1) [B-]field lines (1) EME in dword according to Fore devia Low (Newmorr) or low or	
			∴ <i>EMF</i> induced according to Faraday's Law (Neumann) – or law or equation quoted] (1)	3
	<i>(b)</i>		Using Fleming RHR (1) goes left at top and right at bottom (1) or correct use of r.h. grip rule (1)for flux to oppose or Lenz's law (1)	2
	(c)		$[\Delta] \Phi = B[\Delta] A(1) \qquad A = \pi r^2 (1) \qquad I = \frac{V}{R} (1)$	
			$V = \frac{\Delta \Phi}{t} \text{ or } \frac{\Phi}{t} \text{ or } \frac{d}{dt} (N\Phi) \text{ or similar (1)}$	
			$I = \frac{B\pi r^2/t}{R} = \frac{58 \times 10^{-3} \times \pi (0.31)^2}{0.063 \times 0.44} = 0.63 \text{ A} (1)$	5
				10

Que	stion		Marking details	Marks Available
B6	<i>(a)</i>		See next page for details $3 \times (1)$ points for Higg's Boson or $3 \times (1)$ points for Dark energy / dark matter or $3 \times (1)$ points for Grand Unified Theories	3
	<i>(b)</i>	(i)	$\frac{1}{2}mv^{2} = 50 \text{ MeV (1)}$ $v = \sqrt{\frac{2 \times 50 \times 10^{6} \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27}}} = 9.8 \times 10^{7} \text{ m s}^{-1} (1) \text{ [ans]}$	
		(ii)	$v = 3 \cdot 7 \times 10^{10} \ ms^{-1} \checkmark$	2
		(iii)	2 nd calculation not valid [or 1 st <u>is</u> valid] (1) Because $v_2 > 3 \times 10^8$ m s ⁻¹ [or c] (1)	1
	(c)		Keeps superconductors at low temperature (1) so that high currents [are maintained] (1)	2
	(d)	(i)	Accept ~ $10^{-4} \text{ m} \rightarrow \sim 10^{-3} \text{ mm}$ [be generous] (1) $V = 10^{-12} \text{ m}^3 \rightarrow 10^{-9} \text{ mm}^3$ [ecf on side] (1)	2
		(ii)	pV = nRT(1) number of moles = $\frac{1 \times 10^{-9}}{1}$ [accept $\frac{1 \times 10^{-9}}{2}$] (1) $V = 2.4 \times 10^{-11} \text{ m}^3$ and compared with d(ii) (1) (large range: check)	2
	(e)		 Any 2 × (1) from Gravitational pull small (only 2 protons) ✓ Tiny probability of collision (with small object) ✓ Shrinks in size ✓ due to Hawking radiation ✓ etc. [any sensible answer] 	3
	(1)		(protons would) collide with soot particles	2
	(g)		Annihilated mass = $2 \times 3.1 \times 10^{-6}$ kg [or by implication] (1) $E [= mc^2 = 6.2 \times 10^{-6} \times (3 \times 10^8)^2] = 5.6 \times 10^{11}$ J (1) [1 mark for 2.8×10^{11} J]	1
				2
				20

In each case, any $3 \times (1)$ – no combining marks for different subjects

Higgs Boson Marking Points

- Last particle of standard model
- Related to mass (origin of mass of Universe etc.) / gives mass to matter
- Breaking electroweak gauge symmetry
- Has no spin/angular momentum
- Any prediction for mass with the unit GeV/c^2 [100–300 GeV/c^2 or(100–300) m_p or m_n]

- Possible solution to dark matter problem
- Possibly more than one Higgs predicted

Dark energy/dark matter

- Dark matter related to 'missing' mass (of Universe)
- Evidence from motion of (spiral) galaxies (ph4) {accept from clusters, gravitational lensing etc.)
- Possibly affects anisotropy of cosmic microwave background
- Possible role in galaxy formation
- Does not interact with light (e-m radiation) not "can't be seen", but "can't be detected
- Possibly accounts for 80% [majority]of mass of Universe
- Higgs boson could be responsible for dark matter
- Dark energy possibly related to accelerated expansion of Universe
- Universe made of ~74% [majority] dark energy
- Evidence for accelerated expansion from (class 1a) supernovae
- Recent evidence also for dark 'flow' or 'fluid' any mention
- Dark flow/fluid possibly explains both dark matter/dark energy (no marks for details)

Grand Unification Theories

- Based on unification of force [l]aws
- Specifically weak, strong and electromagnetic (accept gravity as well even though this is theory of everything TOE)
- Electric & magnetic already unified (Einstein)
- Electro-weak unification
- Anything to do with greater gauge symmetry or unified coupling constant
- Unification at high energies
- Not possible to check with particle colliders (i.e. too high an energy)
- Observation through proton decay or neutrino properties

Que	stion		Marking details	Marks Available
C7	(a)		 Any 4 × (1) from alternating / changing p.d. or current in primary ✓ [alternating] <i>B</i>-field / flux inside primary or core ✓ <u>core</u> takes <i>B</i>-field to secondary / links with secondary ✓ alternating / changing flux inside secondary ✓ alternating EMF induced in sec^y according to Faraday's Law, or equation given ✓ 	4
	(b)	(i)	$\frac{N_1}{N_2} = \frac{V_1}{V_2}; \ N_1 \left[= \frac{240}{12} \times 280 \right] \text{(manipulation)}(1) = 5600 \text{[turns]}(1)$	2
		(ii)	use of $P = IV(1)$; so $50 = I_2 \times 12 \rightarrow I_2 = 4.17 \text{ A}(1)$ or $P = 50 = I_1 \times 240 (1)$ $I_1 [= \frac{12}{240} \times 4.17] = 0.21 \text{ A}(1)$ $I_1 [= \frac{50}{240}] = 0.21 \text{ A}(1)$	3
	(c)		Because V_c and V_c cancel or all 30 V across R stated (1) $I = \frac{V}{R} = \frac{30}{6.7} [= 0.448 \text{ A}] (1)$	2
		(ii)	$V_{\rm L} = IX_{\rm L} (1)$ = [0.45 × 2\pi × 1000 × 0.035 =] 98.5 V (1)	2
		(iii)	98.5 V e.c.f.✓	1
		(iv)	$\frac{98.5}{30}$ or $\frac{\omega L}{R}$ or $\frac{1}{\omega CR}(1) = 3.3(1)$	2
		(v)	V_{L} $V_{L}, V_{C}, V_{R} \text{ all } \perp^{r} \text{ with } V_{L} \text{ and } V_{C} \text{ opposite (1)}$ $V_{L} = V_{C} \text{ [by eye]} >> V_{R} \text{ (1)}$ NB. Diagram in any orientation / reflection V_{C}	2
	(d)		at high freq, $X_{\rm C}$ very small (1) and $V_{\rm OUT}$ small (1) [or at low freq, $X_{\rm C}$ very large (1) \therefore $V_{\rm OUT}$ large (1)] $2^{\rm nd}$ mark only given if statement that it is a low pass filter.	2 20

Que	stion		Marking details	Marks Available
C8	(a)	 correct use of the word 'wavelength' [not breadth of undulations] (1) correct statement using path, path length or path difference (1) [e.g. light from the slits have a path difference of a whole number of wavelengths (for a bright fringe)] correct multiplication by 0.0254 (1) 700 nm - 420 nm (1) Any 4 × (1) from: Contradicted Newton ✓ Newton - almost god-like status ✓ Previously accepted particle or corpuscular theory ✓ Young didn't publish 'raw' data ✓ Young didn't explain his working ✓ Brougham's review (not encouraging) ✓ Knife cuts lines of force induces emf in circuit containing knife Vibrations travel along lines of force (1) as a transverse wave (1) [or like waves in a stretched string] (i) Cells of fluid spin (1) axes [of rotation] along lines of force (1) (ii) Clash of vortices [moving against each other at points of contact] (1) 	2	
	<i>(b)</i>			2
	(c)		 Contradicted Newton ✓ Newton – almost god-like status ✓ Previously accepted particle or corpuscular theory ✓ Young didn't publish 'raw' data ✓ Young didn't explain his working ✓ 	
			• Brougham's review (not encouraging) \checkmark	4
	(d)		Knife cuts lines of force induces emf in circuit containing knife	1
	(e)			2
	(f)	(i)		2
		(11)		
	(g)		 zero 'motion' or 'idler' (1) Any 3 × (1) from: failure to detect either (or implied) ✓ Michelson-Morley experiment ✓ No <i>motion</i> detected relative to ether ✓ (different from Success of (special theory of) relativity ✓ detecting ether) Based on <i>no</i> special frame of reference ✓ (i.e. no ether) Any detail of Michelson-Morley experiment e.g. diagram of interferometer ✓ or anything explaining two branches of light in interferometer (at right angles) to compare motion through ether etc. 	2
			+ 1 mark – standard of English and argument	4
			Penalise: average SPaG / too much writing (if irrelevant) Reward: good writing even if SPAG borderline / confident argument e.g. The whole consept (sic) of the ether was nonsense and no	
			experiment confirmed it's (sic) existence. [Good writing though borderline SPaG. First marking point $\rightarrow 2$ marks	20

Que	stion		Marking details	Marks Available
С9	(a)	(i) (ii)	diagram showing dislocation (1) forces <u>in opposition</u> shown or implied in argument (1) correct breaking bond shown (1) $F \rightarrow F \rightarrow$	4
		(11)	stop dislocations from moving (1) [accept work hardening etc for max 1 mark]	2
	<i>(b)</i>	(i)	Hysteresis	1
		(ii)	Greater for loading because area greater (1). [difference] goes to heat [in tendon] (1)	2
		(iii)	Attempt at working out area (s) (1) Good attempt at working out both areas (1) e.g. below loading ~ $\frac{1}{2} \times 0.006 \times 1200 = 3.6 \text{ J}$ + below unloading ~ $\frac{1}{2} + 1\frac{1}{2} + 2\frac{1}{2} + 3\frac{1}{2} + 5\frac{1}{2} = 13\frac{1}{2}$ big sq ^s (1) [or equivalent method, e.g. trapezoidal rule] Efficiency = $\frac{2.7}{3.6} \times 100 = 75\%$ [eq ⁿ + calc–e.c.f. on work values] (1)	3
		(iv)	I. $W = \frac{1}{2}Fe$ [or $W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$] (1) $E = \frac{Fl}{Ae}$ (1) or $E = \frac{\sigma}{\varepsilon}$ and $\sigma = \frac{F}{A}$ and $\varepsilon = \frac{\Delta l}{l}$ <u>Convincing</u> substitution + algebra (1)	3
			II. $F = 1200$ N and $W = 3.6$ J e.c.f. from (iii) [other possibilities] / or other values from graph (1) $l = 0.3$ m and $A = 0.55 \times 10^{-4}$ m ² [i.e. unit conversions] (1) $E \left[=\frac{1200^2 \times 0.3}{2 \times 0.55 \times 10^{-4} \times 3.6}\right] = 1.1$ GPa / or $E = \frac{Fl}{Ae} \rightarrow 1.1$ GPa (1)	3
			 Any 2 × (1) from: Large Young modulus [accept stiff] ✓ Large strains without breaking [accept 'elastic', 'flexible'] ✓ Large stress without breaking/high [ultimate] tensile strength [accept 'strong']√ 	2
				20

Questi	ion		Marking details	Marks Available
C10	(a)	(i)	A = piezoelectric [crystal] \checkmark	1
		(ii)	Stop reflection inside probe [or equiv., e.g. stops waves being cancelled etc.]/ absorb wave going to left / allows short pulses to be generated \checkmark	1
		(iii)	Correct substitution into $Z = \rho v$ once (1) [$Z_{air} = 442 \text{ kg m}^2 \text{ s}^{-1}$; $Z_{skin} = 1.7 \times 10^6 \text{ kg m}^2 \text{ s}^{-1}$] R = 0.99[897] (1) [accept 1, with evidence of good substitution]	2
	 (iv) No [independent mark] – too much reflection [or implied – e.g. 'nearly all reflected from first boundary'] (1) (b) (i) Isotope of / [chemically] the same as the element it replaces (1) Suitable half life or stable daughter nuclide or γ emitter (1) 		1	
			2	
		(ii)	[Activity] rises <u>then falls</u> ✓	1
	(c) (i) X-ray output increases / intensity increases [accept: more X-rays] [because of more electrons per second]		1	
		(ii)	$\frac{1}{2}I_0 = I_0 e^{-\mu x} $ [i.e. substitution] (1)	
			$e^{\mu X_{\frac{1}{2}}} = 2 \rightarrow \ln 2 = \mu X_{\frac{1}{2}}$ (1) [convincing manipulation]	2
		(iii)	$\mu = 57.8 \text{ m}^{-1} \text{ [or } 0.0578 \text{ mm}^{-1} \text{]}$	1
		(iv)	0.05 $I_0 = I_0 e^{-\mu x}$ [or equiv or by impl] (1) [$\mu x = \ln 20 \rightarrow$] $x = 0.052$ m (1)	2
	(d)	(i)	Units on Potential axis / [m]V and time axis / [m]s(1) Large pulse (1) Small pulse before and after (1)	3
		(ii)	So voltage not lost [due to resistance of body] / because can only supply a v small current etc.	1
		(iii)	 Any 2 × (1) of: Large [voltage] gain ✓ Reliable / robust / cheap ✓ Even frequency response ✓ 	
	 Even frequency response ✓ high SNR ✓ 			2
				20

Questi	on		Marking details	Marks Availabl	
C11	(a)	(i) (ii)	$E = \frac{1}{2} mv^{2} \text{ used (1)}$ Power = $\frac{E}{t}$ used (1) $= \frac{\frac{1}{2} \times 1200 \times 28^{2}}{13}$ (1) [= 36.2 kW] Any 2 × (1) sensible points, e.g. • friction in gears / links / engine / wheels [not tyre • air resistance / drag [not heat / sound – too unspective of the sensitive of the s	$F = ma$ $ut (1)$ $1) \rightarrow (2_{max})$ available for $2 max power$ 3 $es] \checkmark$	
		(iii)		$\frac{T_2}{T_1}]$ 2	
		(v)	mass of carbon in tank = $0.042 \times 780 \times 0.85$ kg (1) ratio of carbon to CO ₂ is 12:44 [or used or by impl.] (1) mass of CO ₂ [= $0.042 \times 780 \times 0.85 \times \frac{44}{12}$] = 102 kg (1)	1	
		(vi) (vii)	$\frac{102}{724}$ [e.c.f. on (iv) and (v)] = 0.141 kg km ⁻¹ (1) Appropriate comment: e.g quite good agreement / nearl is burned (1) greenhouse gas / [probably causes] global warming	y all carbon 2	
	<i>(b)</i>	(i)	$350 \text{ TWh} = 350 \times 10^{12} \times [60 \times 60 \text{ (1)}] = 1.26 \times 10^{18} \text{ J} \text{ (1)}$) 2	
		(ii)	40 GW	1	
		(ii)	To cope with peak / winter demand or at 6 o'clock ever kettle etc.	yone boils a 1	
		(iv)	pump water to higher level / pump storage scheme (1) release when required to produce electricity [via turbine generator] (1)	es and 2	
				20	

GCE Physics MS - Summer 2010/WP